• Title/Summary/Keyword: Cutting Force Model

Search Result 271, Processing Time 0.023 seconds

Modeling of the Flexible Disk Grinding Process: Part - I Model Developcment

  • Yoo, Song-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.302-306
    • /
    • 1993
  • In this study, a new model for flexible disk grinding process will be proposed. A grinding mechanism with a grinding disk attached to the rubber platen has been introduced. Since the spinning axis is fixed and only the disk is deflected with respect to this axis, earlier model is not adequate to represent this proces. A new dynamic process model includes an assumption that the disk is deflected locally around the middle of its radial span between the spinning axis and the disk tip instead of several continuous deflection points along the radial span of the disk. Detailed kinematic analysis is proposed as for the removed portion during the process. Cutting force comonent and depth of cut profile trend is compared with the measured result.

  • PDF

Analysis and Optimization of Grinding Condition by Response Surface Model (반응표면모델(RSM)에 의한 평면연삭조건 최적화 및 평가)

  • Kim S.O.;Kwak J.S.;Koo Y.;Sim S.B.;Jeong Y.D.;Ha M.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1257-1260
    • /
    • 2005
  • Grinding process has unique characteristics compared with other machining processes. The cutting edges of the grinding wheel don't have uniformity and act differently on the workpiece at each grinding. The response surface analysis is one of various methods for optimizing and evaluating the process parameters to achieve the desired output. In this study, the effect of the grinding parameters on outcomes of the surface grinding was analyzed experimently. To predict the grinding outcomes and to select the grinding conditions before grinding, the second-order response surface models for the grinding force and the surface roughness were developed.

  • PDF

Structural Analysis of Vehicle Side Door at Overturn (전복시 차량 옆문의 구조해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.43-50
    • /
    • 2010
  • This study aims to analyze the structural safety by comparing deformation and equivalent stress of door with a stiffener or no stiffener when the door crashes against something in case of overturn. Three types are classified on the basis of the no stiffener model in the vehicle door. One is the type which has a stiffener. Another is the type which has no stiffener and the other is the type which has a hole in the stiffener. These three types are compared with each other by analyzing. This side door of vehicle is the automotive part about the kind of vehicle as Mercedes Benz E-Klasse scaled down as 1/18 times as the real size. The study model of vehicle door is modelled by CATIA program and it is analyzed by ANSYS.

Burr and shape distorion in micro-grooving of optical componets (광학부품용 비세홈의 금형가공에 있어서 버와 형상변형에 관한 연구)

  • 임한석;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.53-57
    • /
    • 1996
  • The side burrs and shape distortion resulting from the micromachining of an array of V-shape microgrooves in optical components were experimentally invesigated and a simplified model for their formation is proposed. Burr/shpae distortion should be kept to a minimum level since they degrade the characteristics and performance of these parts. The focus of this study is on the influence of depth of cut and workpiece material. The workpiece materials use were brass, bronze and copper. From the obsevation of the chip shape and burr/shape distortion, the proposed model, that the compressive force at the cutting edge causess the ductile uncut chip material to flow plastically outward toward the free surface to result in a burr, was verified.

  • PDF

Tool Fracture Detection Using System Identification (시스템인식을 이용한 공구파손 검출)

  • 사승윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.119-123
    • /
    • 1996
  • The demands for robotic and automatic system are continually increasing in manufacturing fields. There were so many studies to monitor and predict system, but it were mainly relied upon measuring of cutting force, current of motor spindle and using acoustic sensor, etc. In this study digital image of time series sequence was acquired taking advantage of optical technique. Then, mean square error was obtained from it and was available for useful observation data. The parameter was estimated using PAA(parameter adaptation algorithm) from observation data. AR model was selected for system model, fifth order was decided according to parameter estimation. Uncorrelation test was also carried out to verify convergence of parameter. Through the proceedings, we found there was a system stability.

  • PDF

Ball end milling of sculptured surface models by considering machinability (절삭성을 고려한 자유곡면 모형의 볼 엔드 밀링가공에 관한 연구)

  • 박천경;맹희영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2048-2061
    • /
    • 1991
  • As compared with other cutting types, the ball end milling process causes a complexity in cutting system and a falling-off of machinability. In order to increase the productivity and efficiency in th NC machining of sculptured surfaces, this study carried out the qualitative linearized evaluation about the ball end milling system and applied their practical expressions to the technological processor at the cutter path planning stage. The evaluated expressions were proved to be adequate for practical use from an accuracy point of view and the estimation models were applied to sculptured surface machining processes for finding variable machining conditions. Consequently, it was recognized that variable machining conditions bring about the dispersion of force system and the reduction of machining time by more than 50%.

Study on Optimization of Persimmon Kochujang Jangachi Using Response Surface Methodology (반응표면분석법을 이용한 단감 고추장 장아찌 품질의 최적화 연구)

  • Sim, Hye Hyeon;Choi, Ok-Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.9
    • /
    • pp.1364-1373
    • /
    • 2015
  • The purpose of this study was to determine the optimum sodium concentration (0~8%), soaking time (4~20 min) and storage time (0~60 day) for preparation of persimmon jangachi with kochujang sauce using response surface methodology. Physicochemical properties (salinity, pH, Hunter's color value, cutting force, and sensory evaluation) of persimmon kochujang jangachi were analyzed during storage at $20^{\circ}C$ for 60 days. When the proximate composition of persimmon was analyzed, moisture content, crude protein content, crude lipid content, and crude ash content were 85.41%, 0.51%, 0.22%, and 0.20%, respectively. For persimmon kochujang jangachi manufactured with different sodium concentrations, soaking times, and storage times, salinity, pH, Hunter's color value of L, a, and b, color, flavor, taste, texture, and overall preference were represented by a quadratic model. Cutting force was represented by a linear model pattern. In conclusion, the optimal formulation for persimmon kochujang jangachi, as assessed by numerical and graphical optimization methods, was a sodium concentration of 6.91%, soaking time of 11.36 minutes, and storage time of 25.18 days.

Experimental evaluation of the effects of cutting ring shape on cutter acting forces in a hard rock (커터 링의 형상에 따른 디스크커터 작용력의 실험적 평가)

  • Chang, Soo-Ho;Choi, Soon-Wook;Park, Young-Taek;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.225-235
    • /
    • 2013
  • Cutter forces acting on a disc cutter in TBM are the key parameters for TBM design and its performance prediction. This study aimed to experimentally evaluate cutter forces with different ring shapes in a hard rock. The stiffness of a cutter ring was indirectly estimated from a series of full-scale linear cutting tests. From the experiments, it was verified that the rolling stress acting on a V-shape disc cutter was much higher than on a CCS disc cutter even though the penetration depth by a V-shape disc cutter could be increased in the same cutting condition. Finally, it is suggested that a prediction model considering the shape parameters of a disc cutter should be used for its better prediction.

Technologies to Realize High Stiffness Mechatronics Systems in Production Machines (기계장비의 메카트로닉스 고강성화 기술)

  • Lee, Chan-Hong;Song, Chang Kyu;Kim, Byung-Sub;Kim, Chang-Ju;Heo, Segon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.431-439
    • /
    • 2015
  • One of common challenges in designing modern production machines is realizing high speed motion without sacrificing accuracy. To address this challenge it is necessary to maximize the stiffness of the mechanical structure and the control system with consideration on the main disturbance input, cutting forces. This paper presents analysis technologies for realizing high stiffness in production machines. First, CAE analysis techniques to evaluate the dynamic stiffness of a machine structure and a new method to construct the physical machine model for servo controller simulations are demonstrated. Second, cutting forces generated in milling processes are analyzed to evaluate their effects on the mechatronics system. In the effort to investigate the interaction among the structure, controller, and process, a flexible multi-body dynamics simulation method is implemented on a magnetic bearing stage as an example. The presented technologies can provide better understandings on the mechatronics system and help realizing high stiffness production machines.

CRITICAL DRIVING FORCE FOR CONTRACTOR'S OPPORTUNISTIC BIDDING BEHAVIOR IN PUBLIC WORKS

  • Min-Ren Yan ;Wei Lo ;Chien-Liang Lin
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.417-423
    • /
    • 2005
  • Contractor's opportunistic bidding behavior refers to contractor's deliberate low-bid, which cannot accord with the cost, and expectation for beyond-contractual reward (BCR), the compensation earned through cutting corners or claims after undertaking the construction project. This research applies System Dynamics to develop a model of contractor's pricing with consideration for dimensions of "cost", "market competition", and "BCR". Iterative computer simulations were performed to analyze the effects of contractor's pricing on the market price. The results were then examined by statistical analysis on data collected from 44 highway projects in Taiwan. It is found that the critical force driving the contractors to bid opportunistically is their excessive expectations in BCR under the current environment. Within the price competition mechanism, if the problem of BCR exists, even if the bidding system is further improved, contractors would still prefer opportunistic bidding behavior, and eventually make the whole construction industry operate ineffectively. Therefore, it is crucial to remedy the aforementioned BCR problem by more effective management policy.

  • PDF