• 제목/요약/키워드: Cutting Fluid Aerosol

검색결과 16건 처리시간 0.028초

Dual-PDA를 이용한 절삭유 에어로졸 특성분석에 관한 연구(II) - 선삭공정의 절삭유 에어로졸 예측 (A Study on the Characteristics Analysis of Cutting Fluid Aerosol Using Dual-PDA System(II) - for Cutting Fluid Aerosol Prediction in Turning Process)

  • 정의식;황덕철;우창기;황준
    • 한국분무공학회지
    • /
    • 제10권2호
    • /
    • pp.32-40
    • /
    • 2005
  • This paper presents the analytical approaches to predict cutting fluid aerosol formation characteristics in machining process. The prediction model which is based on the rotary atomization theory analyzes aerosol behaviors in terms of size and concentration. Experiments were tarried out to verify the aerosol formation prediction model under various operational conditions. The experimental results which are obtained by Dual-PDA measurement show resonable agreement with prediction results of aerosol concentration. This study can be provided as a basis to estimate and control the hazardous cutting fluid aerosol in machining process in view of environmental consciousness.

  • PDF

Dual-PDA를 이용한 절삭유 에어로졸 특성분석에 관한 연구(I) -선삭공정을 중심으로 (A Study on the Characteristics Analysis of Cutting Fluid Aerosol Using Dual-PDA System - for Turning Process)

  • 정진열;황덕철;홍기배;우창기;황준
    • 한국분무공학회지
    • /
    • 제10권2호
    • /
    • pp.10-17
    • /
    • 2005
  • The proposed research has been performed to know the characteristics of cutting fluid aerosol formation using Dual-PDA system in machining process. The cutting fluid aerosol size and concentration is common attributes that quantify the environmental intrusiveness or air quality contamination. The atomized cutting fluid aerosols can be affected to human health risk such as lung cancer and skin irritations. Even though cutting fluid can be improved the machining quality and productivity in a carefully. its use must be controlled and optimized carefully. This experimental works using Dual-PDA were performed to analyze the cutting fluid aerosol behaviors and characteristics in turning process using precise aerosol particle measuring system. The obtained experimental results profovide basic knowledge to develop the environmentally conscious machining process. This results cail be provided as a basis to estimate and control the hazardous cutting fluid aerosol in machining process.

  • PDF

Analysis of Cutting Fluid Atomization and Environmental Impact through Spin-Off Mechanism in Turning Operation for Environmentally Conscious Machining(II)

  • Hwang Joan;Hwang Duk-Chul;Chung Eui-Sik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권3호
    • /
    • pp.3-7
    • /
    • 2005
  • This paper presents the experimental results to verify the atomization characteristics and environmental impact of cutting fluid. Even though cutting fluid improves the productivity through the cooling and lubricating effects, environmental impact due to cutting fluid usage is also increased on factory shop floor. Cutting fluid's aerosol via atomization process can generate human health risk such as lung cancer and skin diseases. Experimental results show that the generated fine aerosol of which particle size less than 10 micron appears near working zone under typical operation conditions. The aerosol concentration also exceeds NIOSH regulations. This research can be provided as a basis of environmental impact analysis for environmental consciousness.

선삭에서 절삭유 입자 발생 예측모델 (Prediction Model of Aerosol Generation for Cutting Fluid in Turning)

  • 박성호;오명석;고태조;김희술
    • 한국정밀공학회지
    • /
    • 제21권6호
    • /
    • pp.69-76
    • /
    • 2004
  • This paper presents a prediction model for the aerosol generation of cutting fluid in turning process. Experimental studies have been carried out in order to identify the characteristics of aerosol generation in non-cutting and cutting cases. The indices of aerosol generation was mass concentration comparable to number generation, which is generally used fur environment criterion. Based on the experimental data, empirical model for predicting aerosol mass concentration of cutting fluid could be obtained by a statistical analysis. This relation shows good agreement with experimental data.

환경 친화적 기계가공 기술에 관한 연구 선삭가공시 회전분리기구에 의한 절삭유 미립화와 환경영향(II) (A Study on the Environmentally Conscious Machining Technology Cutting Fluid Atomization and Environmental Impact through Spin-Off Mechanism in fuming Operation(II))

  • 황준;정의식;황덕철
    • 한국정밀공학회지
    • /
    • 제20권2호
    • /
    • pp.50-57
    • /
    • 2003
  • This paper presents the experimental results to verify the atomization characteristics and environmental impact of cutting fluid. Even though cutting fluid improves the productivity through the cooling, Lubricating effects, environmental impact due to cutting fluid usage is also increased on factory shop floor Cutting fluid's aerosol via atomization process can be affected human health risk such as lung cancer and skin diseases. Experimental results show that the generated fine aerosol which particle size less than 10 micron appears near working tone under typical operational conditions. The aerosol concentration also exceeds NIOSH regulations. This research can be provided a basis of environmental impact analysis fur environmental consciousness.

연삭가공에서 절삭유 에어로졸 측정평가에 관한 연구 (A Study on the Analysis of Cutting Fluid Aerosol in Grinding Process)

  • 황준;황덕철;우창기;정의식
    • 한국공작기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1-6
    • /
    • 2005
  • Machining is a one of the broadly used manufacturing process to produce the parts, products and various molds and dies. The environmental impact due to aerosol generation via atomization process is a major concern associated with environmental consciousness. This paper presents the experimental results to analyze the characteristics of cutting fluid aerosol generation in grinding process. Experimental results show that the generated fine aerosol which particle size less than 10micron appears near worker's breath zone under given operational conditions. The aerosol concentration is much higher enough to affect human health risk with its generated aerosol quantities. This quantitative analysis can be provided the basic knowledge f3r further research for environmentally conscious machining technology developments.

연삭가공에서 절삭유 에어로졸 측정평가에 관한 연구 (A Study on the Analysis of Cutting Fluid Aerosol in Grinding Process)

  • 황준;황덕철;우창기;정의식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.282-287
    • /
    • 2005
  • This paper presents the experimental results to analyze the characteristics of cutting fluid aerosol generation in grinding process. Machining is a one of the broad manufacturing process to produce the parts, products and various molds and dies. The environmental impact due to aerosol generation via atomization process is a major concern associated with environmental consciousness. Experimental results show that the generated fine aerosol which particle size less than 10 micron appears near worker's breath zone under given operational conditions. The aerosol concentration is much higher enough to affect human health risk with its generated aerosol quantities. This qualitative analysis can be provided the basic knowledge for further research for environmentally conscious machining technology developments.

  • PDF

절삭유의 미립화 특성 (Atomization Characteristics of Cutting Fluids)

  • 황준;정의식;정진열;황덕철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.943-946
    • /
    • 2002
  • This paper presents atomization characteristics of cutting fluids. To analyze the behavior characteristics of cutting fluid, analytical approach and experimental measurement were performed to predict the aerosol size, velocity and concentration due to cutting fluid atomization mechanism in machining operation. The established analytical model which is based on atomization theory analyzes the cutting fluid motion and aerosol generation in machining process. The predictive models can be used as a basis for environmental impact analysis on the shop floor. It can be also facilitate the optimization of cutting fluid usage in achieving a balanced consideration of productivity and environmental consciousness.

  • PDF

환경친화적 기계가공을 위한 절삭유 최적화에 관한 연구 (Optimization of Cutting Fluids for Environmentally Conscious Machining)

  • 황준;정의식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.948-951
    • /
    • 2000
  • This paper presents the analytical and experimental methodology for the prediction of aerosol concentration and size distribution due to cutting fluid atomization mechanism in turnining operation. The established analytical model which is based on atomization theory analyzes the cutting fluid motion and aerosol generation in machining process. The impinging and evaporation experiments were performed to know the particle size and evaporation rate of cutting fluid. The predictive models can be used as a basis for environmental impact analysis on the shop floor. It can be also facilitate the optimization of cutting fluid usage in achieving a balanced consideration of productivity and environmental consciousness.

  • PDF

환경 친화적 기계가공 기술에 관한 연구 연삭공정에서의 절삭유 미립화와 환경영향(I) (A Study on the Environmentally Conscious Machining Technology Cutting Fluid Atomization and Environmental Impact in Grinding Operation (I))

  • 황준;정의식
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.61-69
    • /
    • 2005
  • This paper presents the experimental results to analyze the atomization characteristics and environmental impact of cutting fluid in grinding process. Grinding is a major machining process to improve surface quality with different machining mechanism which is compared with turning or milling process. The environmental impact due to aerosol generation via grinding process is a major concern associated with environmental consciousness. Experimental results show that the generated fine aerosol which particle size less than 10 micron appears near working zone under given operational conditions. The aerosol concentration is much higher enough to affect human health risk with its generated aerosol quantities. This study can be provided a basic knowledge fur further research of environmental consciousness machining development.