• Title/Summary/Keyword: Cutting Angle

Search Result 557, Processing Time 0.025 seconds

Parametric surface and properties defined on parallelogrammic domain

  • Fan, Shuqian;Zou, Jinsong;Shi, Mingquan
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.27-36
    • /
    • 2014
  • Similar to the essential components of many mechanical systems, the geometrical properties of the teeth of spiral bevel gears greatly influence the kinematic and dynamic behaviors of mechanical systems. Logarithmic spiral bevel gears show a unique advantage in transmission due to their constant spiral angle property. However, a mathematical model suitable for accurate digital modeling, differential geometrical characteristics, and related contact analysis methods for tooth surfaces have not been deeply investigated, since such gears are not convenient in traditional cutting manufacturing in the gear industry. Accurate mathematical modeling of the tooth surface geometry for logarithmic spiral bevel gears is developed in this study, based on the basic gearing kinematics and spherical involute geometry along with the tangent planes geometry; actually, the tooth surface is a parametric surface defined on a parallelogrammic domain. Equivalence proof of the tooth surface geometry is then given in order to greatly simplify the mathematical model. As major factors affecting the lubrication, surface fatigue, contact stress, wear, and manufacturability of gear teeth, the differential geometrical characteristics of the tooth surface are summarized using classical fundamental forms. By using the geometrical properties mentioned, manufacturability (and its limitation in logarithmic spiral bevel gears) is analyzed using precision forging and multiaxis freeform milling, rather than classical cradle-type machine tool based milling or hobbing. Geometry and manufacturability analysis results show that logarithmic spiral gears have many application advantages, but many urgent issues such as contact tooth analysis for precision plastic forming and multiaxis freeform milling also need to be solved in a further study.

Hydrophobic and Mechanical Characteristics of Hydrogenated Amorphous Carbon Films Synthesized by Linear Ar/CH4 Microwave Plasma

  • Han, Moon-Ki;Kim, Taehwan;Cha, Ju-Hong;Kim, Dong-Hyun;Lee, Hae June;Lee, Ho-Jun
    • Applied Science and Convergence Technology
    • /
    • v.26 no.2
    • /
    • pp.34-41
    • /
    • 2017
  • A 2.45 GHz microwave plasma with linear antenna has been prepared for hydrophobic and wear-resistible surface coating of carbon steel. Wear-resistible properties are required for the surface protection of cutting tools and achieved by depositing a hydrogenated amorphous carbon film on steel surface through linear microwave plasma source that has $TE_{10}-TEM$ waveguide. Compared to the existing RF plasma source driven by 13.56 MHz, linear microwave plasma source can easily generate high density plasma and provide faster deposition rate and wider process windows. In this study, $Ar/CH_4$ gas mixtures are used for hydrogenated amorphous carbon film deposition. When microwave power of 1000 W is applied, 40 cm long uniform $Ar/CH_4$ plasma could be obtained in gas pressure of 200~400 mTorr. The Vickers hardness measurement of hydrogenated amorphous carbon film on steel surface was evaluated. It was found the optimized deposition condition at $Ar:CH_4=25:25$ sccm, 300 mTorr with microwave power of 1000W and RF bias power of 100W. By deposition of hydrogenated amorphous carbon film, contact angle on steel surfaces increases from $43.9^{\circ}$ to $93.2^{\circ}$.

Effect of wettability of gypsum materials and rubber impression material on the marginal fitness of zirconia copings (석고 모형재와 고무인상재의 젖음성이 지르코니아 코핑의 변연적합도에 미치는 영향)

  • Kim, Won-Young;Chung, In-Sung;Jeon, Byung-Wook
    • Journal of Technologic Dentistry
    • /
    • v.38 no.4
    • /
    • pp.255-262
    • /
    • 2016
  • Purpose: This study examined the effect of wettability of gypsum materials and rubber impression material on the marginal fitness of zirconia copings. Methods: Three commercially available gypsum materials(Fugirock EP, Snow Rock, Tuff Rock) and three zirconia blocks(iJAM Emerald, LUXEN Smile block, ICE Zirkon transluzent) were studied. The zirconia copings were fabricated by using dental CAD/CAM system. Contact angles on the impression materials were measured with contact angle measuring device. Silicone replica method was used to measure the marginal fitness and cutting was performed on the bucco-lingual and mesio-distal sides. It were observed with a stereomicroscope at °ø40 magnification. The data were statistically analyzed with One-way ANOVA. Results: Mean values of contact angles were $58.3{\pm}0.7^{\circ}$ for Tuff Rock, $77.5{\pm}0.5^{\circ}$ for Fugirock EP and $87.8{\pm}0.5^{\circ}$ for Snow Rock and the difference between them was statistically significant(p<0.05). The smallest values of marginal fitness for the JF groups were $30.7{\pm}3.0{\mu}m$ for bucco-lingual direction, $29.3{\pm}3.0{\mu}m$ for mesio-distal direction. One-way ANOVA showed statistically significant difference between groups for marginal fitness(p<0.05). Conclusion: Tuff rock gypsum material had superior wettability to others. The mean marginal fitness of the Tuff rock gypsum material group were significantly better than other groups. Thus they can be also expected to show clinically satisfactory marginal fitness.

Optimum Design of Pitch Reducer for Wind Turbine Using Genetic Algorithm (유전 알고리즘을 이용한 풍력발전기용 피치감속기의 최적 설계)

  • Kim, Jeong Gil;Park, Young Jun;Lee, Geun Ho;Nam, Yong Yun;Yang, Woo Yeoul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.185-192
    • /
    • 2014
  • Planetary gear design is complex because it involves a combination of discrete variables such as module, integer variables such as the number of teeth, and continuous variables such as face width and aspect ratio. Thus, an optimum design technique is needed. In this study, we applied a genetic algorithm to the design optimization of a planetary gear. In this algorithm, tooth root strength and surface durability are assessed with fundamental variables such as the number of teeth, module, pressure angle, and face width. With the help of this technique, gear designers could reduce trial and error in the initial design stages, thus cutting the time required for planetary gear design.

Experimental and numerical study on the stability of slurry shield tunneling in circular-gravel layer with different cover-span ratios

  • Liu, Xinrong;Liu, Dongshuang;Xiong, Fei;Han, Yafeng;Liu, Ronghan;Meng, Qingjun;Zhong, Zuliang;Chen, Qiang;Weng, Chengxian;Liu, Wenwu
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.265-281
    • /
    • 2022
  • A set of slurry shield test system capable of cutter cutting and slurry automatic circulation is used to investigate the deformation characteristics, the evolution characteristics of support resistance and the distribution and evolution process of earth pressure during excavating and collapsing of slurry shield tunneling in circular-gravel layer. The influence of cover-span ratio on surface subsidence, support resistance and failure mode of excavation face is also discussed. Three-dimensional numerical calculations are performed to verify the reliability of the test results. The results show that, with the decrease of the supporting force of the excavation face, the surface subsidence goes through four stages: insensitivity, slow growth, rapid growth and stability. The influence of shield excavation on the axial earth pressure of the front soil is greater than that of the vertical earth pressure. When the support resistance of the excavation face decreases to the critical value, the soil in front of the excavation face collapses. The shape of the collapse is similar to that of a bucket. The ultimate support resistance increase with the increase of the cover-span ratio, however, the angle between the bottom of the collapsed body and the direction of the tunnel excavation axis when the excavation face is damaged increase first and then becomes stable. The surface settlement value and the range of settlement trough decrease with the increase of cover-span ratio. The numerical results are basically consistent with the model test results.

Development of Path Tracking Algorithm and Variable Look Ahead Distance Algorithm to Improve the Path-Following Performance of Autonomous Tracked Platform for Agriculture (농업용 무한궤도형 자율주행 플랫폼의 경로 추종 및 추종 성능 향상을 위한 가변형 전방 주시거리 알고리즘 개발)

  • Lee, Kyuho;Kim, Bongsang;Choi, Hyohyuk;Moon, Heechang
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.142-151
    • /
    • 2022
  • With the advent of the 4th industrial revolution, autonomous driving technology is being commercialized in various industries. However, research on autonomous driving so far has focused on platforms with wheel-type platform. Research on a tracked platform is at a relatively inadequate step. Since the tracked platform has a different driving and steering method from the wheel-type platform, the existing research cannot be applied as it is. Therefore, a path-tracking algorithm suitable for a tracked platform is required. In this paper, we studied a path-tracking algorithm for a tracked platform based on a GPS sensor. The existing Pure Pursuit algorithm was applied in consideration of the characteristics of the tracked platform. And to compensate for "Cutting Corner", which is a disadvantage of the existing Pure Pursuit algorithm, an algorithm that changes the LAD according to the curvature of the path was developed. In the existing pure pursuit algorithm that used a tracked platform to drive a path including a right-angle turn, the RMS path error in the straight section was 0.1034 m and the RMS error in the turning section was measured to be 0.2787 m. On the other hand, in the variable LAD algorithm, the RMS path error in the straight section was 0.0987 m, and the RMS path error in the turning section was measured to be 0.1396 m. In the turning section, the RMS path error was reduced by 48.8971%. The validity of the algorithm was verified by measuring the path error by tracking the path using a tracked robot platform.

Analysis of Variations in Deformations of Additively Manufactured SUS316L Specimen with respect to Process Parameters and Powder Reuse (금속 적층제조 방식을 이용한 SUS316L 시편의 공정 파라미터 및 금속 분말 재사용에 따른 변형량 변화 분석)

  • Kim, Min Soo;Kim, Ji-Yoon;Park, Eun Gyo;Kim, Tae Min;Cho, Jin Yoen;Kim, Jeong Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.4
    • /
    • pp.223-231
    • /
    • 2022
  • Residual stress that can occur during the metal additive manufacturing process is an important factor that must be properly controlled for the precise production of metal parts through 3D printing. Therefore, in this study, the factors affecting these residual stresses were investigated using an experimental method. For the experiment, a specimen was manufactured through an additive manufacturing process, and the amount of deformation was measured by cutting it. By appropriately calibrating the measured data using methods such as curve fitting, it was possible to quantitatively analyze the effect of process parameters and metal powder reuse on deformation due to residual stress. From this result, it was confirmed that the factor that has the greatest influence on the magnitude of deformation due to residual stress in the metal additive manufacturing process is whether the metal powder is reused. In addition, it was confirmed that process parameters such as laser pattern and laser scan angle can also affect the deformation.

Response of steel pipeline crossing strike-slip fault in clayey soils by nonlinear analysis method

  • Hadi Khanbabazadeh;Ahmet Can Mert
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.409-424
    • /
    • 2023
  • Response of the pipeline crossing fault is considered as the large strain problem. Proper estimation of the pipeline response plays important role in mitigation studies. In this study, an advanced continuum modeling including material non-linearity in large strain deformations, hardening/softening soil behavior and soil-pipeline interaction is applied. Through the application of a fully nonlinear analysis based on an explicit finite difference method, the mechanics of the pipeline behavior and its interaction with soil under large strains is presented in more detail. To make the results useful in oil and gas engineering works, a continuous pipeline of two steel grades buried in two clayey soil types with four different crossing angles of 30°, 45°, 70° and 90° with respect to the pipeline axis have been considered. The results are presented as the fault movement corresponding to different damage limit states. It was seen that the maximum affected pipeline length is about 20 meters for the studied conditions. Also, the affected length around the fault cutting plane is asymmetric with about 35% and 65% at the fault moving and stationary block, respectively. Local buckling is the dominant damage state for greater crossing angle of 90° with the fault displacement varying from 0.4 m to 0.55 m. While the tensile strain limit is the main damage state at the crossing angles of 70° and 45°, the cross-sectional flattening limit becomes the main damage state at the smaller 30° crossing angles. Compared to the stiff clayey soil, the fault movement resulting 3% tensile strain limit reach up to 40% in soft clayey soil. Also, it was seen that the effect of the pipeline internal pressure reaches up to about 40% compared to non-pressurized condition for some cases.

Experimental study on replaceable precast concrete beam-column connections

  • Seung-Ho Choi;Sang-Hoon Lee;Jae-Hyun Kim;Inwook Heo;Hoseong Jeong;Kang Su Kim
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.49-58
    • /
    • 2024
  • The purpose of this study was to develop a system capable of restoring the seismic performance of a precast concrete (PC) connection damaged by an earthquake. The developed PC connection consists of a top-and-seat angle, post-tensioning (PT) tendons, and U-shaped steel. The PC beam can be replaced by cutting the PT tendons in the event of damage. In addition, the seismic performance of the developed PC beam-column connection was evaluated experimentally. A PC beam-column connection specimen was fabricated, and a quasistatic cyclic loading test was conducted to a maximum drift ratio of 2.3%. Subsequently, the PC beam was replaced by a new PC beam, and the repaired PC connection was loaded to a maximum drift ratio of 5.1%. The structural performance of the repaired PC connection was then compared with that of the original PC connection. The difference in the load at the drift ratio of 2.3% between the original and the repaired PC specimens was only 0.2%. The residual drift ratio in the repaired PC specimen did not exceed 1.0% at the 2.0 % drift ratio cycles, which satisfies the life safety performance level specified in ACI 374.2R-13. When the developed PC connection system is used, structural performance can be restored by rapidly replacing the damaged elements.

Granite Dike Swarm and U-Pb Ages in the Ueumdo, Hwaseong City, Korea (경기도 화성시 우음도 일원의 화강암 암맥군과 U-Pb 연령)

  • Chae, Yong-Un;Kang, Hee-Cheol;Kim, Jong-Sun;Park, Jeong-Woong;Ha, Sujin;Lim, Hyoun Soo;Shin, Seungwon;Kim, Hyeong Soo
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.618-638
    • /
    • 2022
  • The Middle Jurassic granite dike swarm intruding into the Paleoproterozoic banded gneiss is pervasively observed in Ueumdo, Hwaseong City, mid-western Gyeonggi Massif. Based on their cross-cutting relationships in a representative outcrop, there are four dikes (UE-A, UE-C, UE-D, UE-E), and depending on the direction, there are three granite dike groups, which are NW- (UE-A dike), NW to WNW- (UE-C dike), and NE-trending (UE-D and UE-E dikes). These granite dikes are massive, medium-to coarse-grained biotite granites, and their relative ages observed in outcrops are in the order of UE-A, UE-D (=UE-E), and UE-C. The geometric analysis of the dikes indicates that the UE-A and UE-C dikes intrude under approximately NE-SW trending horizontal minimum stress fields. The UE-A dike, which showed a relatively low average SiO2 content by major element analysis, is a product of early magma differentiation compared to other dikes; therefore, it is consistent with the relative age of each dike. The 206Pb/238U weighted mean ages for each dike obtained from SHRIMP zircon U-Pb dating were calculated to be 167 Ma (UE-A), 164 Ma (UE-C), 167 Ma (UE-D), and 167 Ma (UE-E), respectively. The samples of the UE-A, UE-D, and UE-E dikes showed very similar ages. The UE-C dike shows the youngest age, which is consistent with the results of the relative age in the outcrops and major element analysis. Therefore, the granite dikes intruded into the Middle Jurassic (approximately 167 and 164 Ma), coinciding with those of the Gyeonggi Massif, where the Middle Jurassic plutons are geographically widely distributed. This result indicates that the wide occurrence of the Middle Jurassic plutons on the Gyeonggi Massif was formed as a result of igneous activity moving in the northwest direction with the shallower subduction angle of the subducting oceanic plate during the Jurassic.