• Title/Summary/Keyword: Cutting Angle

Search Result 559, Processing Time 0.026 seconds

A Study on Cutting Characteristic of Tapered Groove in Turning (선삭가공에서의 테이퍼 홈 절삭특성에 관한 연구)

  • Choi, Chi-Hyuk;Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.27-32
    • /
    • 2011
  • In recently, it is demanded development of manufacturing techniques for machining of various mechanical parts. Therefore the development of turning is one of the important manufacturing techniques. In this study, an experimental shape in tapered groove turning was suggested, and the turning process was investigated by analyzing cutting speed, feed rate, tapered angle, depth of cut. The surface roughness and cutting force change in the workpiece was measured. From the results, the optimum machining conditions are obtained by design of experiments.

Cutting Force Modelling in End-milling Considering Runout (런아웃을 고려한 엔드밀링의 절삭력 모델링)

  • Cho, Hee-Geon;Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.225-231
    • /
    • 2011
  • In this paper, a new end-milling force modelling technique was suggested by considering runout, and its result was compared with real measured force. The specific cutting force is the multiplication of cutting force coefficient and uncut chip thickness. This parameter was used for experimental modelling and prediction of theoretical force. These coefficients, which can be obtained by fitting measured average forces in several conditions, were used for the formulation of theoretical force. The mechanism of end-milling force with runout was developed in this research and its result was verified by comparing the fluctuating theoretical force and its measured one. The fluctuation of force was incurred by a geometric shape of workpiece and its runout in holding. The result of suggested force considering runout shows a good consistency with measured one. So this modelling method can be used effectively for a prediction of end-milling force with runout effect.

A Study on the Drilling Characteristics of Carbon Fiber Epoxy Composite Materials by Diamond Grit Electroplated Drills (다이아몬드 입자 전착드릴에 의한 탄소섬유 에폭시 복합재료의 드릴링 특성에 관한 연구)

  • Kim, Hyeong-Chul;Kim, Ki-Soo;Hahm, Seung-Duck;Kim, Hong-Bea;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.27-38
    • /
    • 1995
  • For solving troubles happened during the drilling process with carbon fiber epoxy composite materials(CFRP) by using HSS drill, a few types of diamond gift electroplated drills are manufactured, and machinability of these drills is experimented with a variety of cutting speed and feed rate. These drills have some advantages of good wear resistant and the conception of grinding process. As a result, using of these drills improves both troubles being caused by tool wear and damage of exit surface depending on fiber stacking angle. It is desirable that cutting conditions for the cutting thickness per revolution must be set under 0.01mm when the size of a diamond grit is # 60 .approx. 80.

  • PDF

Characteristics of Ball End Milling and Rotary Die-sinking Electrical Discharge Machining for the Cutting Inclination Location (가공경사면 위치에 따른 볼엔드밀가공과 회전식 형조방전가공 특성)

  • 왕덕현;김원일;박성은;박창수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.73-80
    • /
    • 2002
  • In this study, work materials of the ree form surface shape was machined by ball end mill cutter according to the change of cutting location and depth, and the acquired data of cutting force, tool deflection and shape accuracy were analyzed. Cutting force results were obtained with tool dynamometer and tool deflection values were measured by a couple of eddy-current sensors. Shape accuracy was obtained by roundness tester and surface profile measuring machine. As inclination angle was decreased, cutting force was increased. Cutting force showed large value at $105^{\circ}$ and $150^{\circ}$. Tool deflection was less at down milling than at up milling, decreased at 45$^{\circ}$ and 120$^{\circ}$, and shown large tool deflection at $150^{\circ}$. Roughness values were found to be bad in the inside of surface shape tool deflection. Surface accuracy was obtained better precision in down milling than in up milling.

Effects of geometric parameters of a combined nozzle for rock cutting using an abrasive waterjet (연마재 워터젯 암석절삭을 위한 결합 노즐의 기하학적 변수 영향)

  • Oh, Tae-Min;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.5
    • /
    • pp.517-528
    • /
    • 2012
  • Inserting a nozzle assembly into a removed cutting space during a continuous cutting operation is necessary in rock excavation using an abrasive waterjet. In this study, a combined two nozzle assembly is used to secure enough removal width. The shape of the cut space is affected by the geometric parameters (standoff distance, nozzle angle, and vertical distance between the nozzle tips) of the combined nozzle assembly. Abrasive waterjet cutting tests are performed with various geometric parameters for granite rock specimens. Optimized geometric parameters for the nozzle inserting process are determined and verified through the experimental tests.

Machining Technology of pinnacle Cutter Edge for Flexible Sheet Die (필름시트 절단용 다이의 절인 가공 기초연구)

  • Je T.J.;Choi D.S.;Whang K.H.;Lee E.S.;Hong S.M.;Choi J.S.;Song B.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.19-20
    • /
    • 2006
  • As the Mobile and Display technology are being developed quickly, new wireless devices are released in great numbers. They reduce existing devices' life time and demand a reduction of developing period of portable devices. With these demands, existing film cutting mold used many films of portable devices, especially LCD Display, needs to be more precise, and cheaper. In this research, we have analyzed machining characteristics of cutter shapes, materials, and cutting conditions for application to other films. Cutter edge was machined by slot cutting method and CAD program to select the cutter shape and cutter angle. Also, we have determined the optimal cutting conditions using high speed machining experiments to improve the productivity.

  • PDF

Design of A Small Thin Milling Cutter Considering Built-up Edge (구성인선을 고려한 소형 박판 밀링공구의 설계)

  • Jung, Kyoung-Deuk;Ko, Tae-Jo;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.130-136
    • /
    • 2001
  • Generally, a metal slitting saw is plain milling cutter with thickness less than 3/16 inch. This is used for cutting a workpiece that high dimensional accuracy and surface finish is necessary. A small thin milling cutter like a metal slitting saw is useful for machining a narrow groove. In this case, built up edge(BUE) is severe at each tooth and affects the surface integrity of the machined surface and tool wear. It is well known that tool geometry and cutting conditions are decisive factors to remove BUE. In this paper, we optimized the geometry of the milling cutter and selected cutting conditions to remove BUE by the experimental investigation. The experiment was planned with Taguchi method based on the orthogonal array of design factors such as coating, rake angle, number of tooth, cutting speed, feed rate. Response table was obtained from the number of built-up edge generated at tooth. The optimized tool geometry and cutting conditions could be determined through response table. In addition, the relative effect of factors was identified bh the analysis of variance (ANOVA). Finally, coating and cutting speed turned out important factors for BUE.

  • PDF

Study on Upward Machining of Inclined Surface by Ball-End Milling (볼 엔드밀에 의한 경사면 상방향 절삭가공에 관한 연구)

  • Jeong, Jin-Woo;Bae, Eun-Jin;Kim, Sang Hyun;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.87-93
    • /
    • 2021
  • The mold industry is competitive, and mold should be processed under optimal conditions for efficient processing. However, the cutting conditions of the ball-end mill, which are a major factor in mold processing, are mostly set empirically, and considerable research is required for increasing the tool life and processing accuracy. In this study, a tool dynamometer and an eddy current sensor were used along with NI-DAQ, a data acquisition device, to obtain characteristic values of the cutting force and tool deformation during the ball end-mill machining of inclined surfaces at a machining center. The cutting force and tool deformation were measured in an experiment. It was found that the tool received the greatest cutting force at the end of the machining process, and the deformation of the tool increased rapidly. Furthermore, the cutting force tended to increase with the angle and number of rotations. The deformation increased rapidly during the machining of a 45° inclined surface.

A Study on the Burr Formation in Shearing with Al Alloy (Al 합금의 전단작업시 발생하는 버어에 관한 연구)

  • Ko, Dae-Lim;Jung, Dong-Won;Kim, Jim-Moo;Lee, Kyung-Sick
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.2
    • /
    • pp.17-21
    • /
    • 2007
  • Shearing including punching, blanking, trimming, slitting, etc is one of the most frequently used processes in sheet metal manufacturing. It has been widely used for manufacturing autobody, electronic components, aircraftbody, etc. In this paper, it has been researched by the experiment to examine the effect of burr height corresponding to die clearance, cutting angle, tool sharpness, etc. This paper presents the experimental results with using Al alloy sheet.

  • PDF

Effects of the Helix Angle on the Tool Deflection in End Milling (엔드밀 가공시 헬릭스각이 공구변위에 미치는 영향)

  • 맹민재;이성찬;정준기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.373-377
    • /
    • 2002
  • In the end milling operation the deflection of the cutter is an important factor affecting the accuracy of machining with implications on the selection of cutting parameters and economics of the operation. The deflection of the end mill was studied both experimentally with strain gauge, tool dynamometer, laser measuring apparatus and on a finite element model of the cutting using ANSYS software. The deflection of machining tool with various helix angles was studied with FEM simulation and experiment. ANSYS analysis performed on the finite element model of the end mill provides deflection results which agree within 15.0% with the experimental ones.

  • PDF