• Title/Summary/Keyword: Cutaneous Basophil Hypersensitivity

Search Result 3, Processing Time 0.017 seconds

Immune Responses in Broiler Chicks Fed Propolis Extraction Residue-supplemented Diets

  • Eyng, C.;Murakami, A.E.;Santos, T.C.;Silveira, T.G.V.;Pedroso, R.B.;Lourenco, D.A.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.1
    • /
    • pp.135-142
    • /
    • 2015
  • This study was conducted to evaluate the effect of inclusion of propolis extraction residue in the feed of broilers from 1 to 21 d of age on phagocytic activity of macrophages, cutaneous basophil hypersensitivity response to phytohemagglutinin, antibody production against Newcastle disease, lymphoid organ weight and hematological profile and to determine the optimal level of inclusion. 120 chicks, reared in metabolism cages until 21 days of age, were distributed in a completely randomized design, with five treatments (0%, 1%, 2%, 3%, and 4% of propolis residue) and six replications. The relative weight of thymus and monocyte percentage were affected by propolis residue, with a quadratic response (p<0.05) and lowest values estimated at 2.38% and 2.49%, respectively. Changes in relative weight of cloacal bursa and spleen, percentage of lymphocyte, heterophil, basophil, eosinophil, and heterophil:lymphocyte ratio, antibody production against Newcastle disease, phagocytic activity of macrophages and the average number of phagocytosed erythrocytes were not observed. The nitric oxide production with regard to positive control (macrophages+erythrocytes) decreased linearly (p<0.05) with increased doses of propolis residue. The remaining variables of nitric oxide production (negative control - macrophages, and difference between the controls) were not affected by propolis residue. The cutaneous basophil hypersensitivity response to phytohemagglutinin as determined by the increase in interdigital skin thickness exhibited a quadratic response (p<0.05), which predicted a lower reaction response at a dose of 2.60% of propolis residue and highest reaction response after 43.05 hours of phytohemagglutinin injection. The inclusion of 1% to 4% of propolis extraction residue in broiler diets from 1 to 21 days of age was not able to improve the immune parameters, despite the modest changes in the relative weight in thymus, blood monocyte percentage, nitric oxide concentration, and interdigital reaction to phytohemagglutinin.

Evaluation of Growth, Carcass, Immune Response and Stress Parameters in Naked Neck Chicken and Their Normal Siblings under Tropical Winter and Summer Temperatures

  • Rajkumar, U.;Reddy, M.R.;Rao, S.V. Rama;Radhika, K.;Shanmugam, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.4
    • /
    • pp.509-516
    • /
    • 2011
  • The performance of naked neck and normal chicken was evaluated with respect to growth, carcass, immune, biochemical and stress parameters under winter and summer seasons to assess the suitability of naked neck birds under high temperatures in the global scenario of climate change. The growth performance was significantly ($p{\leq}0.05$) higher in naked neck chicken in the summer season. The dressing percentage was significantly ($p{\leq}0.05$) higher in naked neck birds in both winter and summer season because of reduced plumage. The thigh, giblet and feather proportion significantly ($p{\leq}0.05$) varied between naked neck and normal chickens in summer season. The humeral immune response to sheep red blood cells (SRBC), Newcastle disease vaccine (NDV) and cutaneous basophil hypersensitivity (CBH) did not show any significant differences among the chicken groups. The protein and cholesterol concentration observed was within the normal ranges. The total cholesterol levels in plasma were significantly ($p{\leq}0.05$) lower in naked neck birds in both the seasons. H:L ratio was significantly ($p{\leq}0.05$) lower in summer season indicating less stress in naked neck chicken. Basophil and eosinophil concentration was significantly ($p{\leq}0.05$) higher in normal chicken in summer. The lipid peroxidation was higher in full feathered birds under summer stress. The enzyme glutathione reductase (GR) levels were significantly higher during the summer and varied significantly ($p{\leq}0.05$) between the normal and naked neck chicken in both seasons. The results indicated that the naked neck birds performed significantly better at high ambient temperatures with respect to growth, carcass and biochemical parameters. It was concluded that the ability of the naked neck chicken to adapt to high temperatures foresees a viable option for the biological mitigation of climate change.

Comparative effects of dietary functional nutrients on growth performance, meat quality, immune responses, and stress biomarkers in broiler chickens raised under heat stress conditions

  • Kim, Deok Yun;Kim, Jong Hyuk;Choi, Won Jun;Han, Gi Ppeum;Kil, Dong Yong
    • Animal Bioscience
    • /
    • v.34 no.11
    • /
    • pp.1839-1848
    • /
    • 2021
  • Objective: The objective of the present study was to investigate the comparative effects of dietary functional nutrients including glutamine (Gln), chromium picolinate (Cr picolinate), vitamin C (Vit C), betaine (Bet), and taurine (Tau) on growth performance, meat quality, immune responses, and stress biomarkers in broiler chickens raised under heat stress conditions. Methods: A total of 420 21-d-old Ross 308 male broiler chickens (initial body weight = 866±61.9 g) were randomly allotted to 1 of 7 treatment groups with 6 replicates. One group was kept under thermoneutral conditions and was fed a basal diet (PC, positive control). Other 6 groups were exposed to a cyclic heat stress condition. One of the 6 groups was fed the basal diet (NC, negative control), whereas 5 other groups were fed the basal diet supplemented with 0.5% Gln, 500 ppb Cr picolinate, 250 mg/kg Vit C, 0.2% Bet, or 1.0% Tau. The diets and water were provided ad libitum for 21 d. Results: Broiler chickens in NC group had decreased (p<0.05) growth performance and immune responses measured based on cutaneous basophil hypersensitivity (CBH), but increased (p<0.05) stress responses measured based on feather corticosterone concentrations and blood heterophil:lymphocyte than those in PC group. However, none of dietary functional nutrients had a positive effect on growth performance of broiler chickens. Dietary supplementation of 250 mg/kg Vit C improved (p<0.05) CBH responses of broiler chickens, but other functional nutrients had no such an improvement in CBH responses. All functional nutrients decreased (p<0.05) stress responses of broiler chickens. Conclusion: Functional nutrients including Gln, Cr picolinate, Vit C, Bet, and Tau at the supplemental levels used in this study decrease stress responses of broiler chickens to a relatively similar extent. However, this reduction in stress responses could not fully ameliorate decreased productive performance of broiler chickens raised under the current heat stress conditions.