• Title/Summary/Keyword: Customized abutment screw

Search Result 9, Processing Time 0.026 seconds

Comparison of removal torque between prefabricated and customized abutment screw (기성품과 맞춤형 임플란트 지대주 나사의 풀림 토크 비교)

  • Jamiyandorj, Otgonbold;Kim, Jee-Hwan;Kim, Mu-Seong;Park, Young-Bum;Shim, June-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.4
    • /
    • pp.243-248
    • /
    • 2012
  • Purpose: The purpose of this study is to compare the removal torque between prefabricated and customized implant abutment screw. Materials and methods: Three types of implant system (Osstem, Astra, Zimmer) were used. For each system, prefabricated abutment screw (control group) and customized abutment screw (test group) were used to connect the fixture and the abutment (n = 6). Digital torque gauze was used to control the tightening torque and the screws were tightened under each manufacturer's recommendation. 10 minutes after the connection the same tightening torque was applied, and 5 minutes after the second connection, the removal torque was measured. This procedure was repeated 10 times. In the cyclic loading test, 10 minutes after the first connection to the 6 groups (n = 3), the same tightening torque was applied, and a total of 1,000,000 time loading was applied at 30 degree angle to long axis with 50 N load. Repeated measures of ANOVA test (${\alpha}$=.05) was used as statistics to evaluate the effect of repeated loading number on the removal torque. Independent t-test was used to evaluate the difference in removal torque after cyclic loading. Results: The removal torque significantly decreased as the number of loading repetition increased (P<.05). In the 10 time repetition test, there was no significant difference between the prefabricated and customized implant abutment screw of the 3 implant system (P<.05). Also in the cyclic loading test, there was no significant difference between the prefabricated and customized implant abutment screw of the 3 implant system (P<.05). Conclusion: Within the limitation of this study, there was no significant difference in the removal torque between the prefabricated abutment screw and customized abutment screws.

Influence of the implant abutment types and the dynamic loading on initial screw loosening

  • Kim, Eun-Sook;Shin, Soo-Yeon
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • PURPOSE. This study examined the effects of the abutment types and dynamic loading on the stability of implant prostheses with three types of implant abutments prepared using different fabrication methods by measuring removal torque both before and after dynamic loading. MATERIALS AND METHODS. Three groups of abutments were produced using different types of fabrication methods; stock abutment, gold cast abutment, and CAD/CAM custom abutment. A customized jig was fabricated to apply the load at $30^{\circ}$ to the long axis. The implant fixtures were fixed to the jig, and connected to the abutments with a 30 Ncm tightening torque. A sine curved dynamic load was applied for $10^5$ cycles between 25 and 250 N at 14 Hz. Removal torque before loading and after loading were evaluated. The SPSS was used for statistical analysis of the results. A Kruskal-Wallis test was performed to compare screw loosening between the abutment systems. A Wilcoxon signed-rank test was performed to compare screw loosening between before and after loading in each group (${\alpha}$=0.05). RESULTS. Removal torque value before loading and after loading was the highest in stock abutment, which was then followed by gold cast abutment and CAD/CAM custom abutment, but there were no significant differences. CONCLUSION. The abutment types did not have a significant influence on short term screw loosening. On the other hand, after $10^5$ cycles dynamic loading, CAD/CAM custom abutment affected the initial screw loosening, but stock abutment and gold cast abutment did not.

Comparison of marginal and internal fit of zirconia abutments with titanium abutments in internal hexagonal implants (내부육각 연결형 임플란트에서 지르코니아 지대주와 티타늄 지대주의 변연 및 내면 적합도의 비교)

  • Kim, Young-Ho;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.2
    • /
    • pp.93-102
    • /
    • 2016
  • Purpose: The aim of this study was to evaluate the fit accuracy of two zirconia and titanium abutments in internal hexagonal implants. Materials and methods: One titanium abutment and two zirconia abutments were tested in internal hexagonal implants (TSV, Zimmer). Prefabricated zirconia abutments (ZirAce, Acucera) and customized zirconia abutments milled by the Zirkonzahn system (Zirkonzahn Max, Zirkonzahn) were selected and prefabricated titanium abutments (Hex-Lock, Zimmer) were used as a control. Eight abutments per group were connected to implants with 30 Ncm torque. The marginal gaps at abutment-implant interface, the internal gaps at internal hex, vertical and horizontal gaps between screws and screw seats in abutments were measured after sectioning the embedded specimens using a scanning electron microscope. Data analysis included one-way analysis of variance and the Scheffe test (n=16, ${\alpha}=0.05$). Results: The mean marginal gap of customized zirconia abutment was higher than those of two prefabricated zirconia and titanium abutments. The internal gaps at internal hex showed no significant differences between customized and prefabricated abutments and were higher than those of prefabricated titanium abutments. The mean vertical and horizontal gaps at screw in prefabricated zirconia abutment were higher than those of prefabricated titanium abutment. In the case of customized zirconia abutment, the mean horizontal gap at screw was higher than those of both the prefabricated zirconia and the titanium abutment but the mean vertical gap was not even measureable. The screw seats were clearly formed but did not match with abutment screws in prefabricated zirconia abutments. They were not, however, precisely formed in the case of customized zirconia abutments. Conclusion: Within the limitations of this study, the prefabricated titanium abutments showed better fit than the zirconia abutments, regardless of customized or prefabricated. Also, the customized zirconia abutments showed significantly higher marginal gaps and the fit was less accurate between screws and screw seats than the prefabricated abutments, titanium and zirconia.

Effect of abutment screw length and cyclic loading on removal torque in external and internal hex implants

  • Mohammed, Hnd Hadi;Lee, Jin-Han;Bae, Ji-Myung;Cho, Hye-Won
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.1
    • /
    • pp.62-69
    • /
    • 2016
  • PURPOSE. The purpose of this study was to evaluate the effects of abutment screw length and cyclic loading on the removal torque (RTV) in external hex (EH) and internal hex (IH) implants. MATERIALS AND METHODS. Forty screw-retained single crowns were connected to external and internal hex implants. The prepared titanium abutment screws were classified into 8 groups based on the number of threads (n = 5 per group): EH 12.5, 6.5, 3.5, 2.5 and IH 6.5, 5, 3.5, 2.5 threads. The abutment screws were tightened with 20 Ncm torque twice with 10-minute intervals. After 5 minutes, the initial RTVs of the abutment screws were measured with a digital torque gauge (MGT12). A customized jig was constructed to apply a load along the implant long axis at the central fossa of the maxillary first molar. The post-loading RTVs were measured after 16,000 cycles of mechanical loading with 50 N at a 1-Hz frequency. Statistical analysis included one-way analysis of variance and paired t-tests. RESULTS. The post-loading RTVs were significantly lower than the initial RTVs in the EH 2.5 thread and IH 2.5 thread groups (P<.05). The initial RTVs exhibited no significant differences among the 8 groups, whereas the post-loading RTVs of the EH 6.5 and EH 3.5 thread groups were higher than those of the IH 3.5 thread group (P<.05). CONCLUSION. Within the limitations of this study, the external hex implants with short screw lengths were more advantageous than internal hex implants with short screw lengths in torque maintenance after cyclic loading.

Customized abutment and screw-type implant prostheses after cementation based on the digital intra-oral impression technique (구강 내 디지털 인상채득을 통한 맞춤형 지대주와 시멘트 합착 후 나사형 임플란트 보철 수복 증례)

  • Hong, Yong-Shin;Park, Eun-Jin;Kim, Sun-Jong;Kim, Myung-Rae;Heo, Seong-Joo;Park, Ji-Man
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.1
    • /
    • pp.67-73
    • /
    • 2012
  • Fixed dental prostheses such as inlay, onlay, crown, and bridge fabricated by CAD/CAM technique combined with digital impressions is getting popular due to the recent rapid progress of digital impression taking system. For the scope of implant prosthesis, however, digital intra-oral scan hasn't been actively utilized for the fabrication of superstructures. In this case report, 6 cases of titanium-milled custom abutment based on the iTero intra-oral scan data were introduced, five of them were restored with screw-type prosthesis after cementation (SCRP) and the clinical results were satisfactory on restoring the function and esthetics.

Digital evaluation of axial displacement by implant-abutment connection type: An in vitro study

  • Kim, Sung-Jun;Son, KeunBaDa;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.388-394
    • /
    • 2018
  • PURPOSE. To measure axial displacement of different implant-abutment connection types and materials during screw tightening at the recommended torque by using a contact scanner for two-dimensional (2D) and three-dimensional (3D) analyses. MATERIALS AND METHODS. Twenty models of missing mandibular left second premolars were 3D-printed and implant fixtures were placed at the same position by using a surgical guide. External and internal fixtures were used. Three implant-abutment internal connection (INT) types and one implant-abutment external connection (EXT) type were prepared. Two of the INT types used titanium abutment and zirconia abutment; the other INT type was a customized abutment, fabricated by using a computer-controlled milling machine. The EXT type used titanium abutment. Screws were tightened at $10N{\cdot}cm$, simulating hand tightening, and then at the manufacturers' recommended torque ($30N{\cdot}cm$) 10 min later. Abutments and adjacent teeth were subsequently scanned with a contact scanner for 2D and 3D analyses using a 3D inspection software. RESULTS. Significant differences were observed in axial displacement according to the type of implant-abutment connection (P<.001). Vertical displacement of abutments was greater than overall displacement, and significant differences in vertical and overall displacement were observed among the four connection types (P<.05). CONCLUSION. Displacement according to connection type and material should be considered in choosing an implant abutment. When adjusting a prosthesis, tightening the screw at the manufacturers' recommended torque is advisable, rather than the level of hand tightening.

Fit analysis of CAD-CAM custom abutment using micro-CT (Micro-CT를 이용한 맞춤형 CAD-CAM 지대주의 적합성 분석)

  • Min, Gwang-Seok;Chung, Chae-Heon;Kim, Hee-Jung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.4
    • /
    • pp.370-378
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate screw joint stability and sagittal fit between internal connection implant fixtures of two different manufacturers and customized abutments. Materials and methods: Internal connection implant systems from two different manufacturers (Biomet 3i system, Astra Tech system) were selected for this study (n=24 for each implant system, total n=48). For 3i implant system, half of the implants were connected with Ti ready-made abutments and the other half implants were connected with Ti CAD-CAM custom ones of domestic-make (Myplant, Raphabio Co., Seoul, Korea) and were classified into Group 1 and Group 2 respectively. Astra implants were divided into Group 3 and Group 4 in the same way. Micro-CT sagittal imaging was performed for fit analysis of interfaces and preloading reverse torque values (RTV) were measured. Results: In the contact length of fixture-abutment interface, there were no significant differences not only between Group 1 and Group 2 but also between Group 3 and Group 4 (Mann-Whitney test, P>.05). However, Group 2 and Group 4 showed higher contact length significantly than Group 1 and Group 3 in abutment-screw interface as well as fixture-screw one (Mann-Whitney test, P<.05). In addition, RTV was lower in CAD-CAM custom abutments compared to ready-made ones (Student t-test, P<.05). Conclusion: It is considered that domestically manufactured CAD-CAM custom abutments have similar fit at the fixture abutment interface and it could be used clinically. However, RTV of CAD-CAM custom abutments should be improved for the increase of clinical application.

Stress Analysis and Fatigue Failure of Prefabricated and Customized Abutments of Dental Implants (치과 임플란트에서 기성 지대주와 맞춤형 지대주의 응력분석 및 피로파절에 관한 연구)

  • Kim, Hee-Eun;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.3
    • /
    • pp.209-223
    • /
    • 2013
  • This study was to evaluate the stress distributions of prefabricated, customized abutments and fixtures according to their material and shape by three-dimensional finite element analysis. And to investigate the fatigue life and fracture characteristics. Mandibular models were fabricated by reconstruction of the CT scan of patients with normal occlusion. A total of six finite element models were designed, a load of 100 N was applied on the buccal cusps vertically, and 30 degree obliquely. 10 specimens each were fabricated for the more clinically widely used 4 type abutments and were loaded according to ISO 14801. Differences in stress distribution patterns were not found according to the materials of the abutments and fixtures. But a slight difference in the stress level was detected. Customized abutment groups showed lower crown stress levels. One-piece zirconia implant showed the lowest bone stress levels. In the fatigue test, highest values were measured in group 7. Prefabricated abutments showed less variation of fatigue life (P<0.05). Use of customized abutments can improve the fracture resistance of restorations. Especially, use of customized zirconia abutments reinforced by titanium screw connecting parts is recommended.

Effect of internal gap on retentivity in implant fixed prosthesis with lingual slot (설측 슬롯을 부여한 임플란트 고정성 보철물에서 내면 간격이 유지력에 미치는 영향)

  • Kim, Tae-Kyun;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.3
    • /
    • pp.206-211
    • /
    • 2018
  • Purpose: Recently, a method of forming a slot in the prosthesis lingual has been introduced to solve the occlusal and aesthetic disadvantages of screw-retained prosthesis in the manufacture of implant-fixed prosthesis and to ensure retrievability in cement retained prostheses. The purpose of this study is to investigate the effect of the internal gap on the removal of the prosthesis in the preparation of cement-retained implant prostheses with lingual slots. Materials and methods: Titanium abutment and internal gap of the zirconia prosthesis to be attached to the upper part were set to 30, 35, and $50{\mu}m$, respectively. Three for each type total 15 were produced for each type. The zirconia prosthesis formed a retrievable cement-type slot with a space of 1 mm at the location where the titanium abutment meets the shelf area. Autocatalytic resin cement was used for bonding of abutment and zirconia prosthesis, and the maximum removal stress value was measured in units of Ncm by using the customized equipment of the cemented specimen. The Kruskal-Wallis test was used to compare the three groups by statistical analysis (${\alpha}=.05$), modified by post hoc test the Mann-Whitney U-test and the Bonferroni correction method were used to compare the two methods (${\alpha}=.017$). Results: There was no statistically significant difference in removal stress between the $30{\mu}m$ group and the $35{\mu}m$ group in the internal gap (P = .032), and there was a significant difference between the $30{\mu}m$ group and the $50{\mu}m$ group, between the $35{\mu}m$ group and the $50{\mu}m$ group (P < .017). Conclusion: Thus, the internal gap of computer-aided design affected the retention between the zirconia prosthesis and the titanium abutment.