• Title/Summary/Keyword: Customer segment

Search Result 97, Processing Time 0.025 seconds

An NLP-based Mixed-method Approach to Explore the Impact of Gratifications and Emotions on the Acceptance of Amazon Go

  • Arghya Ray;Subhadeep Jana;Nripendra P. Rana
    • Asia pacific journal of information systems
    • /
    • v.33 no.3
    • /
    • pp.541-572
    • /
    • 2023
  • Amazon Go is a cashierless convenience store concept, which is seen as a disruption in the grocery retail segment. Although Amazon Go has the ability to disrupt the retail segment, there are speculations on how Amazon Go will be perceived by users. Existing studies have not utilized user-generated content to understand the factors that affect customer behaviour in case of Amazon Go. Additionally, in case of phygital retail, studies have not attempted at understanding the effect of emotions and gratifications on user behaviour. To address the gap of exploring user perspectives based on their experience, we have examined the impact of gratifications and emotions on the acceptance of phygital retail using user-generated-content. A mixed-method approach has been utilized using only user-generated content. Utilizing topic-modelling based content analysis and emotion analysis on 30 articles related to Amazon Go, we found themes like, convenience, technology, experience, personalization, enjoyment and emotions like, bad, good, annoyance, success. In the empirical analysis, we have utilized 522 reviews about Amazon Go from the cognition and emotion theory stance, and found that hedonic gratifications have a positive impact on challenge emotions. We also found a significant impact of emotions on customer's favourite behaviour.

A Genetic Algorithm for Solving a QFD(Quality Function Deployment) Optimization Problem

  • Yoo, Jaewook
    • International Journal of Contents
    • /
    • v.16 no.4
    • /
    • pp.26-38
    • /
    • 2020
  • Determining the optimal levels of the technical attributes (TAs) of a product to achieve a high level of customer satisfaction is the main activity in the planning process for quality function deployment (QFD). In real applications, the number of customer requirements for developing a single product is quite large, and the number of converted TAs is also high so the size of the house of quality (HoQ) becomes huge. Furthermore, the TA levels are often discrete instead of continuous and the product market can be divided into several market segments corresponding to the number of HoQ, which also unacceptably increases the size of the QFD optimization problem and the time spent on making decisions. This paper proposed a genetic algorithm (GA) solution approach to finding the optimum set of TAs in QFD in the above situation. A numerical example is provided for illustrating the proposed approach. To assess the computational performance of the GA, tests were performed on problems of various sizes using a fractional factorial design.

A Market Segmentation Scheme Based on Customer Information and QAP Correlation between Product Networks (고객정보와 상품네트워크 유사도를 이용한 시장세분화 기법)

  • Jeong, Seok-Bong;Shin, Yong Ho;Koo, Seo Ryong;Yoon, Hyoup-Sang
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.97-106
    • /
    • 2015
  • In recent, hybrid market segmentation techniques have been widely adopted, which conduct segmentation using both general variables and transaction based variables. However, the limitation of the techniques is to generate incorrect results for market segmentation even though its methodology and concept are easy to apply. In this paper, we propose a novel scheme to overcome this limitation of the hybrid techniques and to take an advantage of product information obtained by customer's transaction data. In this scheme, we first divide a whole market into several unit segments based on the general variables and then agglomerate the unit segments with higher QAP correlations. Each product network represents for purchasing patterns of its corresponding segment, thus, comparisons of QAP correlation between product networks of each segment can be a good measure to compare similarities between each segment. A case study has been conducted to validate the proposed scheme. The results show that our scheme effectively works for Internet shopping malls.

Food and Beverage Marketing Mix in The Hotels (관광호텔 식음료상품 마케팅믹스에 관한 연구)

  • 하경희
    • Culinary science and hospitality research
    • /
    • v.5 no.1
    • /
    • pp.175-204
    • /
    • 1999
  • Today, the hotel industry in a whole are facing serious problems with a number of reasons. To overcome this situation, Customer-Oriented Marketing is considered to be a solution for the hotel F & B management, due to the potential of F & B department. The main purpose of this study was to present the Food and Beverage Marketing Mix Strategies suitable for the market characteristics. To achieve the purpose of this study, theoretical and empirical approaches were used. In review of theoritical background, basic concepts and characteristics of hotel F & B, hotel F & B marketing environment, and hotel F & B marketing mix were studied. Based on the theoritical studies and previous studies, F & B marketing mix sub-components were chosen. In this research, F & B 5P's and 1I marketing mix are discussed, they are Product, Price, Promotion, People, Physical evidence and Image. Through the survey, a number of important segment markets are emerged, which lead to essential segment markets ; business, conference and leisure market. F & B marketing mix strategies as follows. First, for the physical evidence mix, to build up the position as deluxe hotels, it is necessary to matte an investment in technical and decorative components. Second, for the people mix, to assure the service quality, the education and training programs for employee are required. Third, for the image mix, to ensure the image of hotel brand strength, the consideration for public area layout, restaurant and bar ambience, and green policy are required. Fourth, for the product and price mix, to differentiate the F & B, it is necessary to offer thorned and ethnic cuisine, and signature restaurants. Fifth, for the promotion mix, to attract more cumstomers, creative and various promotion activities, and long-term investment in customer-oriented marketing are required. There were some limitations in this study. That is, most of hotels don't operate the concrete and effective F & B marketing, have difficulty in getting data base for F & B customer. Despite their limitations, this study add some values to hotel F & B management in that it introduce the service marketing mix strategies to hotel F & B marketing.

  • PDF

A Study of the Beauty Commerce Customer Segment Classification and Application based on Machine Learning: Focusing on Untact Service (머신러닝 기반의 뷰티 커머스 고객 세그먼트 분류 및 활용 방안: 언택트 서비스 중심으로)

  • Sang-Hyeak Yoon;Yoon-Jin Choi;So-Hyun Lee;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.22 no.4
    • /
    • pp.75-92
    • /
    • 2020
  • As population and generation structures change, more and more customers tend to avoid facing relation due to the development of information technology and spread of smart phones. This phenomenon consists with efficiency and immediacy, which are the consumption patterns of modern customers who are used to information technology, so offline network-oriented distribution companies actively try to switch their sales and services to untact patterns. Recently, untact services are boosted in various fields, but beauty products are not easy to be recommended through untact services due to many options depending on skin types and conditions. There have been many studies on recommendations and development of recommendation systems in the online beauty field, but most of them are the ones that develop recommendation algorithm using survey or social data. In other words, there were not enough studies that classify segments based on user information such as skin types and product preference. Therefore, this study classifies customer segments using machine learning technique K-prototypesalgorithm based on customer information and search log data of mobile application, which is one of untact services in the beauty field, based on which, untact marketing strategy is suggested. This study expands the scope of the previous literature by classifying customer segments using the machine learning technique. This study is practically meaningful in that it classifies customer segments by reflecting new consumption trend of untact service, and based on this, it suggests a specific plan that can be used in untact services of the beauty field.

The Impact of Prices and Distribution on Customer Satisfaction in the Pharmaceutical Industry of Kazakhstan

  • Аida OMIR;Assel BEKBOSSINOVA;Orazaly SABDEN;Anel A. KIREYEVA
    • Journal of Distribution Science
    • /
    • v.22 no.7
    • /
    • pp.83-94
    • /
    • 2024
  • Purpose: This article aims to investigate the influence of pricing and distribution on the level of satisfaction and purchase decisions among consumers of pharmaceutical products in Kazakhstan. Research design, data, and methodology: A mixed-methods research design was utilized, incorporating primary and secondary data. Primary data were collected through a survey administered to customers across various pharmacy types, with 100 valid responses analyzed. Secondary data involved an extensive review of existing literature and analysis of national statistics concerning the pharmaceutical market trends from 2008 to 2022. Results: The results reveal a complex relationship between price perceptions and customer satisfaction. A significant segment of the population views current drug prices as high, which affects their satisfaction levels and purchase decisions. The study also highlights the importance of service quality in enhancing customer satisfaction, suggesting that service improvements could mitigate some of the negative perceptions of pricing. Conclusions: This research contributes to the limited but growing body of knowledge on the impact of pricing strategies on consumer satisfaction in the pharmaceutical sectors of developing countries like Kazakhstan. Focusing on economic and behavioral aspects, this study provides a more holistic understanding of the factors driving consumer satisfaction and purchase behaviors in this critical sector.

Perceptional Change of a New Product, DMB Phone

  • Kim, Ju-Young;Ko, Deok-Im
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.3
    • /
    • pp.59-88
    • /
    • 2008
  • Digital Convergence means integration between industry, technology, and contents, and in marketing, it usually comes with creation of new types of product and service under the base of digital technology as digitalization progress in electro-communication industries including telecommunication, home appliance, and computer industries. One can see digital convergence not only in instruments such as PC, AV appliances, cellular phone, but also in contents, network, service that are required in production, modification, distribution, re-production of information. Convergence in contents started around 1990. Convergence in network and service begins as broadcasting and telecommunication integrates and DMB(digital multimedia broadcasting), born in May, 2005 is the symbolic icon in this trend. There are some positive and negative expectations about DMB. The reason why two opposite expectations exist is that DMB does not come out from customer's need but from technology development. Therefore, customers might have hard time to interpret the real meaning of DMB. Time is quite critical to a high tech product, like DMB because another product with same function from different technology can replace the existing product within short period of time. If DMB does not positioning well to customer's mind quickly, another products like Wibro, IPTV, or HSPDA could replace it before it even spreads out. Therefore, positioning strategy is critical for success of DMB product. To make correct positioning strategy, one needs to understand how consumer interprets DMB and how consumer's interpretation can be changed via communication strategy. In this study, we try to investigate how consumer perceives a new product, like DMB and how AD strategy change consumer's perception. More specifically, the paper segment consumers into sub-groups based on their DMB perceptions and compare their characteristics in order to understand how they perceive DMB. And, expose them different printed ADs that have messages guiding consumer think DMB in specific ways, either cellular phone or personal TV. Research Question 1: Segment consumers according to perceptions about DMB and compare characteristics of segmentations. Research Question 2: Compare perceptions about DMB after AD that induces categorization of DMB in direction for each segment. If one understand and predict a direction in which consumer perceive a new product, firm can select target customers easily. We segment consumers according to their perception and analyze characteristics in order to find some variables that can influence perceptions, like prior experience, usage, or habit. And then, marketing people can use this variables to identify target customers and predict their perceptions. If one knows how customer's perception is changed via AD message, communication strategy could be constructed properly. Specially, information from segmented customers helps to develop efficient AD strategy for segment who has prior perception. Research framework consists of two measurements and one treatment, O1 X O2. First observation is for collecting information about consumer's perception and their characteristics. Based on first observation, the paper segment consumers into two groups, one group perceives DMB similar to Cellular phone and the other group perceives DMB similar to TV. And compare characteristics of two segments in order to find reason why they perceive DMB differently. Next, we expose two kinds of AD to subjects. One AD describes DMB as Cellular phone and the other Ad describes DMB as personal TV. When two ADs are exposed to subjects, consumers don't know their prior perception of DMB, in other words, which subject belongs 'similar-to-Cellular phone' segment or 'similar-to-TV' segment? However, we analyze the AD's effect differently for each segment. In research design, final observation is for investigating AD effect. Perception before AD is compared with perception after AD. Comparisons are made for each segment and for each AD. For the segment who perceives DMB similar to TV, AD that describes DMB as cellular phone could change the prior perception. And AD that describes DMB as personal TV, could enforce the prior perception. For data collection, subjects are selected from undergraduate students because they have basic knowledge about most digital equipments and have open attitude about a new product and media. Total number of subjects is 240. In order to measure perception about DMB, we use indirect measurement, comparison with other similar digital products. To select similar digital products, we pre-survey students and then finally select PDA, Car-TV, Cellular Phone, MP3 player, TV, and PSP. Quasi experiment is done at several classes under instructor's allowance. After brief introduction, prior knowledge, awareness, and usage about DMB as well as other digital instruments is asked and their similarities and perceived characteristics are measured. And then, two kinds of manipulated color-printed AD are distributed and similarities and perceived characteristics for DMB are re-measured. Finally purchase intension, AD attitude, manipulation check, and demographic variables are asked. Subjects are given small gift for participation. Stimuli are color-printed advertising. Their actual size is A4 and made after several pre-test from AD professionals and students. As results, consumers are segmented into two subgroups based on their perceptions of DMB. Similarity measure between DMB and cellular phone and similarity measure between DMB and TV are used to classify consumers. If subject whose first measure is less than the second measure, she is classified into segment A and segment A is characterized as they perceive DMB like TV. Otherwise, they are classified as segment B, who perceives DMB like cellular phone. Discriminant analysis on these groups with their characteristics of usage and attitude shows that Segment A knows much about DMB and uses a lot of digital instrument. Segment B, who thinks DMB as cellular phone doesn't know well about DMB and not familiar with other digital instruments. So, consumers with higher knowledge perceive DMB similar to TV because launching DMB advertising lead consumer think DMB as TV. Consumers with less interest on digital products don't know well about DMB AD and then think DMB as cellular phone. In order to investigate perceptions of DMB as well as other digital instruments, we apply Proxscal analysis, Multidimensional Scaling technique at SPSS statistical package. At first step, subjects are presented 21 pairs of 7 digital instruments and evaluate similarity judgments on 7 point scale. And for each segment, their similarity judgments are averaged and similarity matrix is made. Secondly, Proxscal analysis of segment A and B are done. At third stage, get similarity judgment between DMB and other digital instruments after AD exposure. Lastly, similarity judgments of group A-1, A-2, B-1, and B-2 are named as 'after DMB' and put them into matrix made at the first stage. Then apply Proxscal analysis on these matrixes and check the positional difference of DMB and after DMB. The results show that map of segment A, who perceives DMB similar as TV, shows that DMB position closer to TV than to Cellular phone as expected. Map of segment B, who perceive DMB similar as cellular phone shows that DMB position closer to Cellular phone than to TV as expected. Stress value and R-square is acceptable. And, change results after stimuli, manipulated Advertising show that AD makes DMB perception bent toward Cellular phone when Cellular phone-like AD is exposed, and that DMB positioning move towards Car-TV which is more personalized one when TV-like AD is exposed. It is true for both segment, A and B, consistently. Furthermore, the paper apply correspondence analysis to the same data and find almost the same results. The paper answers two main research questions. The first one is that perception about a new product is made mainly from prior experience. And the second one is that AD is effective in changing and enforcing perception. In addition to above, we extend perception change to purchase intention. Purchase intention is high when AD enforces original perception. AD that shows DMB like TV makes worst intention. This paper has limitations and issues to be pursed in near future. Methodologically, current methodology can't provide statistical test on the perceptual change, since classical MDS models, like Proxscal and correspondence analysis are not probability models. So, a new probability MDS model for testing hypothesis about configuration needs to be developed. Next, advertising message needs to be developed more rigorously from theoretical and managerial perspective. Also experimental procedure could be improved for more realistic data collection. For example, web-based experiment and real product stimuli and multimedia presentation could be employed. Or, one can display products together in simulated shop. In addition, demand and social desirability threats of internal validity could influence on the results. In order to handle the threats, results of the model-intended advertising and other "pseudo" advertising could be compared. Furthermore, one can try various level of innovativeness in order to check whether it make any different results (cf. Moon 2006). In addition, if one can create hypothetical product that is really innovative and new for research, it helps to make a vacant impression status and then to study how to form impression in more rigorous way.

  • PDF

The Moderating Effect of Bargain-proneness in Customer Evaluation of Retail Service (유통 서비스에 대한 고객 평가에 있어 소비자 흥정 선호의 조절효과)

  • Kim, Yong-Cheol
    • Journal of Distribution Science
    • /
    • v.17 no.4
    • /
    • pp.69-76
    • /
    • 2019
  • Purpose - The purpose of this study is to examine the effect of basic value satisfaction on service quality evaluation and customer loyalty and the moderating effect of Bargain-proneness in this process. Specifically, I analyzed the influence of basic value satisfaction, the mediating effect of service quality evaluation, and the moderated mediation effect of Bargain-proneness. Research design, data, and methodology - Data collection for this study was conducted for adults over 18 years of age with shopping experiences in traditional market within a month around the traditional market in the metropolitan area. A total of 250 questionnaire response data was obtained. Hypotheses were tested using SPSS. The PROCESS macro method was used to verify the mediating effect of the service quality evaluation on the relationship between basic value satisfaction and customer loyalty. Hierarchical regression analysis was performed to analyze the moderated mediation effect of the bargain-proneness tendency. Results - Empirical results showed that the basic value satisfaction affected service quality evaluation and customer loyalty. Specifically, it has been found that it directly affects customer loyalty and indirectly influences through service quality evaluation. The moderated mediation effect of the bargain-proneness tendency in the process of basic value satisfaction affecting customer loyalty through service quality evaluation has been verified. In other words, the higher the bargain-proneness tendency, the more influence the basic value satisfaction has on the favorable service quality evaluation. Conclusions - This study contributed to the distribution literature in that it attempted a new empirical study considering the variable 'bargain-proneness tendency', which had not received much academic attention in the past. Furthermore, this study contributed academically in that it presented important moderating variables that should be paid attention in the field of distribution studies. In this study, bargain-proneness was used with a focus on traditional markets, but this variable could play an significant role in future offline distribution studies that should pay attention to meet hedonic needs of shopping. These results suggested that traditional market practitioners should focus on the basic value and that the bargain-prone consumer segment should be considered as a target.

Target Market Determination for Information Distribution and Student Recruitment Using an Extended RFM Model with Spatial Analysis

  • ERNAWATI, ERNAWATI;BAHARIN, Safiza Suhana Kamal;KASMIN, Fauziah
    • Journal of Distribution Science
    • /
    • v.20 no.6
    • /
    • pp.1-10
    • /
    • 2022
  • Purpose: This research proposes a new modified Recency-Frequency-Monetary (RFM) model by extending the model with spatial analysis for supporting decision-makers in discovering the promotional target market. Research design, data and methodology: This quantitative research utilizes data-mining techniques and the RFM model to cluster a university's provider schools. The RFM model was modified by adapting its variables to the university's marketing context and adding a district's potential (D) variable based on heatmap analysis using Geographic Information System (GIS) and K-means clustering. The K-prototype algorithm and the Elbow method were applied to find provider school clusters using the proposed RFM-D model. After profiling the clusters, the target segment was assigned. The model was validated using empirical data from an Indonesian university, and its performance was compared to the Customer Lifetime Value (CLV)-based RFM utilizing accuracy, precision, recall, and F1-score metrics. Results: This research identified five clusters. The target segment was chosen from the highest-value and high-value clusters that comprised 17.80% of provider schools but can contribute 75.77% of students. Conclusions: The proposed model recommended more targeted schools in higher-potential districts and predicted the target segment with 0.99 accuracies, outperforming the CLV-based model. The empirical findings help university management determine the promotion location and allocate resources for promotional information distribution and student recruitment.

UX Methodology Study by Data Analysis Focusing on deriving persona through customer segment classification (데이터 분석을 통한 UX 방법론 연구 고객 세그먼트 분류를 통한 페르소나 도출을 중심으로)

  • Lee, Seul-Yi;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.151-176
    • /
    • 2021
  • As the information technology industry develops, various kinds of data are being created, and it is now essential to process them and use them in the industry. Analyzing and utilizing various digital data collected online and offline is a necessary process to provide an appropriate experience for customers in the industry. In order to create new businesses, products, and services, it is essential to use customer data collected in various ways to deeply understand potential customers' needs and analyze behavior patterns to capture hidden signals of desire. However, it is true that research using data analysis and UX methodology, which should be conducted in parallel for effective service development, is being conducted separately and that there is a lack of examples of use in the industry. In thiswork, we construct a single process by applying data analysis methods and UX methodologies. This study is important in that it is highly likely to be used because it applies methodologies that are actively used in practice. We conducted a survey on the topic to identify and cluster the associations between factors to establish customer classification and target customers. The research methods are as follows. First, we first conduct a factor, regression analysis to determine the association between factors in the happiness data survey. Groups are grouped according to the survey results and identify the relationship between 34 questions of psychological stability, family life, relational satisfaction, health, economic satisfaction, work satisfaction, daily life satisfaction, and residential environment satisfaction. Second, we classify clusters based on factors affecting happiness and extract the optimal number of clusters. Based on the results, we cross-analyzed the characteristics of each cluster. Third, forservice definition, analysis was conducted by correlating with keywords related to happiness. We leverage keyword analysis of the thumb trend to derive ideas based on the interest and associations of the keyword. We also collected approximately 11,000 news articles based on the top three keywords that are highly related to happiness, then derived issues between keywords through text mining analysis in SAS, and utilized them in defining services after ideas were conceived. Fourth, based on the characteristics identified through data analysis, we selected segmentation and targetingappropriate for service discovery. To this end, the characteristics of the factors were grouped and selected into four groups, and the profile was drawn up and the main target customers were selected. Fifth, based on the characteristics of the main target customers, interviewers were selected and the In-depthinterviews were conducted to discover the causes of happiness, causes of unhappiness, and needs for services. Sixth, we derive customer behavior patterns based on segment results and detailed interviews, and specify the objectives associated with the characteristics. Seventh, a typical persona using qualitative surveys and a persona using data were produced to analyze each characteristic and pros and cons by comparing the two personas. Existing market segmentation classifies customers based on purchasing factors, and UX methodology measures users' behavior variables to establish criteria and redefine users' classification. Utilizing these segment classification methods, applying the process of producinguser classification and persona in UX methodology will be able to utilize them as more accurate customer classification schemes. The significance of this study is summarized in two ways: First, the idea of using data to create a variety of services was linked to the UX methodology used to plan IT services by applying it in the hot topic era. Second, we further enhance user classification by applying segment analysis methods that are not currently used well in UX methodologies. To provide a consistent experience in creating a single service, from large to small, it is necessary to define customers with common goals. To this end, it is necessary to derive persona and persuade various stakeholders. Under these circumstances, designing a consistent experience from beginning to end, through fast and concrete user descriptions, would be a very effective way to produce a successful service.