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Abstract: Determining the optimal levels of the technical attributes (TAs) of a product to achieve a high level 
of customer satisfaction is the main activity in the planning process for quality function deployment (QFD). 
In real applications, the number of customer requirements for developing a single product is quite large, and 
the number of converted TAs is also high so the size of the house of quality (HoQ) becomes huge. Furthermore, 
the TA levels are often discrete instead of continuous and the product market can be divided into several 
market segments corresponding to the number of HoQ, which also unacceptably increases the size of the QFD 
optimization problem and the time spent on making decisions. This paper proposed a genetic algorithm (GA) 
solution approach to finding the optimum set of TAs in QFD in the above situation. A numerical example is 
provided for illustrating the proposed approach. To assess the computational performance of the GA, tests 
were performed on problems of various sizes using a fractional factorial design. 
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1. Introduction 

Quality function deployment (QFD) is a widely adopted customer-oriented product development 
methodology by analyzing customer requirements (CRs) [1]. The essential concept of QFD is to use a series of 
charts called the houses of quality (HoQ) to convert CRs into technical attributes (TAs) and in this way into 
parts characteristics, process plans, and manufacturing operations [2]. An HoQ typically contains information 
about the relationship between CRs and TAs, as well as TAs and benchmarking data [3]. Based on the 
information contained in the HoQ, determining the optimal levels of the TAs of the product for achieving a high 
level of customer satisfaction is the main activity of the QFD planning process.  

In QFD studies, the values of TAs are presumed to be continuous while often taken as discrete within real 
applications, meaning that each TA has a few alternatives [4, 5]. What engineers need to do is to select the best 
one among all the possible alternatives of TAs. Besides, it is relatively easier to assign a single value to customer 
satisfaction and associated costs for each alternative of a TA than to clarify the precise relationships between 
them. Experienced engineers can determine the cost for achieving a certain degree of requirement on a TA, 
based on their knowledge. In the specified degree of a TA, it is then possible to determine the degree of customer 
satisfaction for one aspect of a CR. The optimization approach is then used to find a way to obtain the optimum 
set of TAs from a limited number of their alternatives [4, 6]. 

Another of the assumptions regarding most of QFD optimization problems is that the heterogeneous 
customer requirements in a market can be generalized and thus only one HoQ is used to link to CRs. However, 
customers who have different beliefs about social issues (e.g. religion, politics, labor, drugs, women’s rights) 
or personal interests (e.g. family, home, work, food, self-fulfillment, health, clubs, friends, shopping) may have 
different purchase behaviors or preferences [7, 8]. As a result, customers on a product market may have different 
reactions to a product. Therefore, a product market can be divided into several market segments, each containing 
a group of customers with homogeneous preferences. HoQs should be developed as many market segments as 
divided.  
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On the other hand, in real applications, the number of CRs for developing a single product is quite large, 
and the number of converted TAs is also high so that the size of one HoQ becomes huge [8, 9]. Furthermore, 
the number of alternatives each TA has and the number of market segments corresponding to the number of 
HoQs mentioned above also greatly increase the size of one QFD optimization problem and spend a long time 
on making decisions unacceptably. The QFD optimization problem with such a large size and complexity makes 
the existing solution approaches developed for small or medium size QFD optimization problems inapplicable. 
Therefore, a solution approach for efficiently solving the QFD optimization problem in the above-mentioned 
situation needs to be developed. 

In this study, a genetic algorithm (GA) is proposed to solve such a large size QFD optimization problem 
for determining optimal discrete values of TAs on the multi-segment market in QFD which is more realistic in 
practice. To assess the computational performance of the proposed GA, a fractional factorial design is applied 
for the designs of experimentation, and the time spent on solving the various size problems and the quality of 
the optimal solutions are measured using a model and example extended from [4, 10]. 

The amount of the literature regarding QFD is so vast that the scope of the literature review in this paper 
specifically focuses on determining the optimal levels of TAs in QFD. Meanwhile, there are a few useful 
literature reviews of general applications of QFD [11-16]. 

Linear programming is a well-known method that has been used to find the best set of TAs. In general, 
this model is used to allocate resources to different TAs to maximize the overall customer satisfaction (OCS) 
[6, 17-22]. In these studies, it is assumed that the values of TAs may be at any point in a continuous range 
whereas in real applications they are often considered discrete. Lai et al. (2005) built a model for the QFD 
optimization problem with the discrete TAs values and developed a dynamic programming solution approach 
to solve the model [4]. Delice & Güngör (2011) also proposed a mixed-integer linear programming model 
combining with multi-objective decision making for the QFD optimization problem with the discrete TAs 
values [5]. Integer programming is suggested for product design optimization with a modified HoQ 
prioritization procedure using a multi-attribute decision method for assigning relationship ratings between CRs 
and TAs [23]. Non-linear models are also developed to solve the QFD optimization problems by incorporating 
realistic cost functions [24], under consideration of product lifecycle factors and resource constraints [25], and 
based on a fuzzy regression approach to model functional relationships between CRs and TAs, and among TAs 
in the inherent fuzziness [26], respectively. 

There appear to be few studies on QFD optimization under the multi-segment market as well as a huge 
and complex QFD matrix. Luo et al. (2010) developed a methodology that includes a customer survey, fuzzy 
clustering, QFD, and fuzzy optimization to achieve the optimum target settings for the TAs of a new product 
on a multi-segment market [27]. Yoo (2015) proposed a dynamic programming methodology to find the optimal 
discrete levels of TAs under a multi-segment market in QFD [10]. An improved algorithm, a combination of 
imperialist competitive algorithm and GA, is proposed as a solution approach for efficiently solving a huge and 
complex QFD matrix [28]. 

The rest of the paper is organized as follows. Section 2 introduces both the model and the GA approach. 
In Section 3, a numerical illustration is appeared to demonstrate the proposed approach. Section 4 shows the 
results of the computational experiments and provides a discussion of relevant aspects. Finally, conclusions are 
drawn in Section 5. 

2. Materials and Methods  

2.1 Model 

A model extended from [4, 10] is introduced in this section. Suppose a product has I CRs and J TAs, and 
market segments exist in T. It is also assumed that one segment of the market corresponds to one HoQ. T HoQs 
should be created. According to the characteristics of each market segment, CRs, and their weights, the 
relationship between each TA and other TAs, the relationship between each CR and the TAs required to 
implement it, and benchmarking scores for competitors' products and their existing products are included in 
each HoQ.  

For market segment t, the relative importance of CR i is obtained from the other CRs, 𝑤 , which is the 
scaled weight of the importance of CR i (0 ≤ 𝑤 ≤ 1 and ∑ 𝑤 = 1), and the relationship between CR i 
and TA j, 𝑟  (0 ≤ 𝑟 ≤ 1 and ∑ 𝑟 = 1). Wasserman (1993) proposed a useful approach to normalizing 
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the relationship matrix considering the interrelationships between the TAs [17]. In this paper, the relationship 
matrix is assumed to have already been normalized.  

To reflect it into the traditional HoQ that the levels of individual TAs can be discrete, which means each 
TA has a few alternatives, we need to incorporate some additional information into the HoQ. We add to the 
traditional HoQ the alternatives for each TA and the corresponding customer satisfaction information. As a 
result, the extended HoQ is shown in Fig. 1. The remaining parts of the HoQ remain the same.  

It is assumed in this HoQ that TA 1 has a alternatives, TA 2 has b alternatives, … , TA j has p alternatives, 
… , TA J has q alternatives. 𝑇𝐴  (j = 1, 2, … , J; k = 1, 2, . . . , K; t = 1, 2, … , T) refers to alternative k of 
TA j in market segment t. 𝐶𝑟  means the customer satisfaction level (CSL) of CR i acquired by 𝑇𝐴 .  

Then the information relating to costs can be summarized as in Table 1. For market segment t, 𝐶  is the 
cost of 𝑇𝐴  and 𝐶𝑅  means customer satisfaction achieved by 𝑇𝐴 . Assume that customer satisfaction, 𝐶𝑅 , is the weighted sum of each customer satisfaction of each CR obtained in market segment t by 𝑇𝐴 . 
Then, 𝐶𝑅  is calculated from the following formula: 

 𝐶𝑅 = ∑ 𝑤 𝐶𝑟            (1) 
 

where I is the number of CRs. 
 

Table 1. Cost information for market segment t 

TA Cost CSL TA Cost CSL … TA Cost CSL … TA Cost CSL
TA11t C11t CR11t TA21t C21t CR21t … TAj1t Cj1t CRj1t … TAJ1t CJ1t CRJ1t
… … … … … … … … … … … … … … 

TA1at C1at CR1at TA2bt C2bt CR2bt … TAjpt Cjpt CRjpt … TAJqt CJqt CRJqt

 

 Technical 
attribute 1 

Technical 
attribute 2 … Technical 

attribute j … Technical 
attribute J 

Customer 
requirement 1 w1t 

r11t r12t 

… 

r1jt 

… 

r1Jt 
TA11t Cr111t TA21t Cr121t TAj1t Cr1j1t TAJ1t Cr1J1t

… … … … … … … … 
TA1at Cr11at TA2bt Cr12bt TAjpt Cr1jpt TAJqt Cr1Jqt

Customer 
requirement 2 w2t 

r21t r22t 

… 

r2jt 

… 

r2Jt 
TA11t Cr211t TA21t Cr221t TAj1t Cr2j1t TAJ1t Cr2J1t

… … … … … … … … 
TA1at Cr21at TA2bt Cr22bt TAjpt Cr2jpt TAJqt Cr2Jqt

… … … … … … … … 

Customer 
requirement i wit 

ri1t ri2t 

… 

rijt 

… 

riJt 
TA11t Cri11t TA21t Cri21t TAj1t Crij1t TAJ1t CriJ1t

… … … … … … … … 
TA1at Cri1at TA2bt Cri2bt TAjpt Crijpt TAJqt CriJqt

… … … … … … … … 

Customer 
requirement I wIt 

rI1t rI2t 

… 

rIjt 

… 

rIJt 
TA11t CrI11t TA21t CrI21t TAj1t CrIj1t TAJ1t CrIJ1t

… … … … … … … … 
TA1at CrI1at TA2bt CrI2bt TAjpt CrIjpt TAJqt CrIJqt

Figure 1. The extended HoQ for market segment  

Assuming that the OCS of the whole market is the weighted sum of the customer satisfaction of the 
individual market segments, the objective function of this optimization problem can be developed as follows 

 
OCS = ∑ ∑ ∑ 𝜉 𝐶𝑅 𝑥  

 
where 𝑥  is equal to 1 if alternative k of TA j in market segment t, 𝑇𝐴 , is selected, and 0 otherwise. 𝐶𝑅  is defined as (1), and 𝜉  is the normalized weight of the importance of market segment t (0 ≤ 𝜉 ≤ 1 and ∑ 𝜉 = 1 ).  
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If the number of customers in market segment t is estimated based on the historical sales data of the firm and 
the salesmen’s knowledge, 𝜉  can be obtained as 

 𝜉 = 𝑞 ∑ 𝑞  

 
where 𝑞  is the estimated number of customers in market segment t.  

The problem of selecting a set of TA alternatives for each segment of the multi-segment market to maximize 
the OCS of the multi-segment market while not exceeding the budget available for the multi-segment market can 
be formulated as a multiple-choice 0-1 knapsack problem, Problem (P). 

 
Problem (P) 

max OCS = ∑ ∑ ∑ 𝜉 𝐶𝑅 𝑥                         (2) 
s. t.       ∑ ∑ ∑ 𝐶 𝑥 ≤ 𝐵                       (3) 

             ∑ 𝑥 = 1                 for all j, t          (4) 
   𝑥 ∈ 0,1                   for all j, k, t        (5) 

 
In the formulation of Problem (P) the objective function (2) maximizes the OCS in the multi-segment market; 

the budget constraint (3) indicates that the capital consumption by the alternatives selected cannot exceed the 
multi-segment market budget available; in any market segment, the alternative selection constraint set (4) forces 
the problem to select one and only one alternative for each TA; and the constraint set (5) imposes the integrality 
of the decision variables.  

2.2 Genetic Algorithm 

GA approach is applied to solve problem (P) of determining the optimal levels of TAs in QFD under a multi-
segment market to maximize the OCS of the multi-segment market. The description of each step of the proposed 
GA approach in this paper is as follows. 

Initialization: Genetic Representation 

A chromosome can be defined to have J × T genes corresponding to J TAs for T market segments. A gene 
takes an integer number from a set {1,2,….,K} which means alternatives for a TA in a market segment. The 
position of a gene is used to represent a TA in a market segment and the value of a gene is used to represent an 
alternative selected for a TA in a market segment. Then, 𝑦 , an indicator variable, is defined as follows: 

 𝑦 = 𝑘     if 𝑥 = 1,  j=1,2,…,J; k=1,2,…,K; t=1,2,…,T 
 
For Problem (P), this permutation encoding is effective since it always meets constraint (4). 

Step 1: Initial Population 

The initial population with the size being fixed at a certain number is randomly generated. 

Step 2: Fitness Evaluation 

Each chromosome of the initial population obtained in Step 1, as well as each chromosome created by the 
genetic operators in Step 5 and 6, are evaluated to give some measure of their fitness. Objective function (2) in 
Problem (P) is used as the measure of the fitness of each chromosome.  

Genetic operators in Step 5 and 6 used to manipulate the chromosomes often yield infeasible offspring. In 
this research, the penalty technique is proposed to handle infeasible offspring [29].  

This technique turns a constrained problem into an unconstrained problem by penalizing infeasible solutions, 
in which a penalty term is applied to the objective function for any violation of the constraints. An evaluation 
function with a penalty term is proposed as follows: 
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where 𝑋  represents chromosome i, 𝑓(𝑋 ) the objective function of Problem (P) and 𝑝(𝑋 ) the penalty term of 𝑋 . 
For Problem (P), the penalty term is expressed as follows: 
 

𝑝(𝑋 ) = ⎩⎪⎨
⎪⎧0,                        𝑖𝑓 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(3)𝑖𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑  𝛼 𝐵 − 𝑐 𝑥 , otherwise                    

 
where α is a positive penalty value. 

 
Let |𝑝(𝑋)|   and |𝑓(𝑋)|  be the maximum of |𝑝(𝑋)| and the minimum of |𝑓(𝑋)|  in the current 

population, respectively. It is also required that |𝑝(𝑋)| ≤ |𝑓(𝑋)|  to avoid negative fitness value. 

Step 3: Termination 

If the population converges when either a fixed % of the chromosomes in the population have the same 
fitness value or the number of generations reaches a fixed number, then the GA is terminated.  

Step 4: Selection 

The roulette wheel selection and elitist approach are combined as a selection approach. Roulette wheel 
selection is a method to reproduce a new generation proportional to the fitness of each individual, and the elitist 
method is used to preserve the best next-generation chromosome and to overcome stochastic sampling errors. 

Step 5: Crossover 

After performing the selection procedure in Step 4, the population sorted by descending fitness values of 
individuals is bisected. From among the members of the first half of the population that have a higher degree of 
fitness in order than the other half of the population, the first member who has the highest degree of fitness in the 
first half of the population is selected, and another member is randomly selected from the whole population to be 
a pair. As the second pair, the second member with the second highest degree of fitness is selected from the first 
half of the population and another member is randomly selected from the whole population. Repeat this N/2 (half 
size of the population) times. Then, a uniform crossover is accomplished for each pair by replacing the gene values 
for two genes on the same position which are different from each other with random integers generated from 
{1,2,…,K}.  

Step 6: Mutation 

Uniform mutation is performed for each pair in the current population. Generating 2n (n is the size of a child 
chromosome) random numbers in [0, 1], we select genes for the mutation if the random number randomly assigned 
to each of them is less than the rate of mutation which is set to 1/2n. The value for the selected gene is replaced by 
a random integer generated from {1,2,…,K}. Then go to Step 3. 

3. An Illustrative Example 

An example extended from [4, 10] is used to illustrate the application of the proposed GA approach in this 
research. 

The problem for the application is to determine in the two market segments the optimum levels of the TAs 
of a washing machine according to the CRs. Five CRs for the two market segments are identified as being the 
biggest concern of washing machine customers. They include “thorough washing”, “quiet washing”, “thorough 
rinsing”, “less damage to clothes” and “short washing time”. Five TAs, which are "washing quality (%)", "noise 
level (dB)", "washing time (min)", "rinsing quality (%)", and "clothing damage rate (%)", are also identified 
from the engineer's point of view of washing machine design. The relationship between CRs and TAs as well 
as the relative importance of CRs for market segment 1 and 2 are shown in the HoQ template in Table 2 and 
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Table 3, respectively. Since we are not focusing on the information about competitive analysis and the 
interrelationship between TAs, these are not shown in Table 2 and Table 3. In this example, each TA has three 
alternatives. 

 
Table 2. The HoQ for Market Segment 1 

  Washing Quality 
(%) 

Noise Level 
(dB) 

Washing Time 
(min) 

Rinsing Quality 
(%) 

Clothes Damage 
Rate (%) 

  Level Satisfaction 
level Level Satisfaction

level LevelSatisfaction 
level LevelSatisfaction 

level Level Satisfaction
level 

Thorough 
washing 

 0.3125 0 0.0625 0.3125 0.3125 

0.313 
90 0.65 45 0 30 0.8 95 1 0.5 0.8 
95 0.85 50 0 35 0.9 90 0.7 0.7 0.9 
98 1 60 0 40 1 80 0.4 1 1 

Quiet 
Washing 

 0.3 0.5 0.1 0.1 0 
 90 1 45 1 30 1 95 0.85 0.5 0 

0.25 95 0.8 50 0.7 35 0.9 90 0.9 0.7 0 
 98 0.7 60 0.4 40 0.6 80 1 1 0 

Thorough 
rinsing 

 0.3 0 0.1 0.5 0.1 
 90 0.5 45 0 30 1 95 1 0.5 1 

0.188 95 0.9 50 0 35 0.6 90 0.8 0.7 0.9 
 98 1 60 0 40 0.5 80 0.4 1 0.8 

Less 
damage 

to clothes 

 0.231 0.077 0.077 0.231 0.384 
 90 1 45 1 30 1 95 1 0.5 1 

0.125 95 0.8 50 0.9 35 0.9 90 0.6 0.7 0.8 
 98 0.7 60 0.9 40 0.8 80 0.5 1 0.5 

Short 
washing 

time 

 0.714 0 0.143 0.143 0 
 90 0.7 45 0 30 1 95 0.6 0.5 0 

0.125 95 0.9 50 0 35 0.8 90 0.8 0.7 0 
 98 1 60 0 40 0.6 80 1 1 0 

 

Table 3. The HoQ for Market Segment 2 

  Washing Quality 
(%) 

Noise Level 
(dB) 

Washing Time 
(min) 

Rinsing Quality 
(%) 

Clothes Damage 
Rate (%) 

  LevelSatisfaction 
level LevelSatisfaction 

level LevelSatisfaction 
level LevelSatisfaction 

level Level Satisfaction
level 

Thorough 
washing 

 0.2875 0 0.1712 0.258 0.2833 

0.3265 
92 0.7 54 0 39 1 81 0.7 1 1 
94 0.8 50 0 36 0.9 83 0.8 0.8 0.8 
96 1 46 0 33 0.8 85 1 0.6 0.6 

Quiet 
Washing 

 0 1 0 0 0 
 92 1 54 0.5 39 0 81 0 1 0 

0.0067 94 0.85 50 0.7 36 0 83 0 0.8 0 
 96 0.75 46 1 33 0 85 0 0.6 0 

Thorough 
rinsing 

 0.285 0 0.1828 0.2849 0.2738 
 92 0.6 54 0 39 1 81 0.5 1 0.8 

0.2237 94 0.8 50 0 36 0.9 83 0.7 0.8 0.9 
 96 1 46 0 33 0.8 85 1 0.6 1 

Less 
damage 

to clothes 

 0.2688 0 0.1495 0.2688 0.3129 
 92 1 54 0 39 0.6 81 0.5 1 0.5 

0.4156 94 0.9 50 0 36 0.8 83 0.6 0.8 0.7 
 96 0.7 46 0 33 1 85 1 0.6 1 

Short 
washing 

time 

 0.2152 0 0.3119 0.2654 0.2165 
 92 0.8 54 0 39 0.5 81 1 1 0.7 

0.0275 94 0.9 50 0 36 0.7 83 0.8 0.8 0.8 
 96 1 46 0 33 1 85 0.6 0.6 1 
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We also need the TA alternatives-related cost information and the total budget for the two market segments. 
The accumulative customer satisfaction achieved through each TA alternative is also required for calculation. 
The total budget is assumed to be 24. All this information is listed in Table 4 and Table 5. It is also assumed 
that the number of customers in the two market segments, 𝑞  and 𝑞 , respectively was estimated at 12,000 and 
9,000. These data are used to show the importance of the two market segments. 

 
Table 4. Cost and Customer Satisfaction Level for Market Segment 1 

Washing Quality 
(%) Noise Level (dB) Washing Time (min) Rinsing Quality (%) Clothes Damage 

Rate (%) 
Level 
(%) CostSatisfac-

tion 
Level 
(dB) CostSatisfac-

tion 
Level
(min) CostSatisfac-

tion 
Level
(%) CostSatisfac-

tion 
Level 
(%) CostSatisfac-

tion 
90 3 0.4342 45 5 0.2143 30 4 0.5362 95 3 0.5220 0.5 4 0.3219
95 4 0.4844 50 3 0.1643 35 2 0.4754 90 2 0.4397 0.7 2 0.3148
98 5 0.5077 60 2 0.1214 40 1 0.4183 80 1 0.3645 1 1 0.3005

   
Table 5. Cost and customer satisfaction level for market segment 2 

Washing Quality 
(%) Noise Level (dB) Washing Time (min) Rinsing Quality (%) Clothes Damage 

Rate (%) 
Level 
(%) Cost Satisfac-

tion 
Level 
(dB) Cost Satisfac-

tion 
Level
(min) Cost Satisfac-

tion 
Level
(%) Cost Satisfac-

tion 
Level 
(%) Cost Satisfac-

tion 
92 3 0.3459 54 3 0.0014 39 1 0.3486 81 1 0.2467 1 1 0.3139
94 4 0.3620 50 4 0.0020 36 2 0.3630 83 2 0.2954 0.8 2 0.3323
96 5 0.3744 46 5 0.0029 33 3 0.3785 85 4 0.4210 0.6 3 0.3697

 
The proposed GA in this research was applied to solve this problem. All procedures have been coded using 

MATLAB and run on a PC with an Intel Core i3-2100 CPU (3.10 GHz) processor and 4 GB RAM. 
A chromosome can be defined to have ten genes corresponding to the five TAs for the two market 

segments. A gene takes a random integer number generated from a set {1, 2, 3} which means alternatives for 
each TA in each market segment. An indicator variable, 𝑦  is defined as follows: 

 𝑦 = 𝑘           if 𝑥 = 1, j=1,2,…,5;k=1,2,3;t=1,2 
 
Fig. 2 shows an example of this genetic representation method which stands for a solution of 𝑥 = 1, 𝑥 = 1, 𝑥 = 1, 𝑥 = 1, 𝑥 = 1, 𝑥 = 1, 𝑥 = 1, 𝑥 = 1, 𝑥 = 1, 𝑥 = 1. 
 

111 =y  321 =y  331 =y  141 =y  351 =y 112 =y 222 =y 332 =y  142 =y  252 =y

Figure 2. Example of permutation encoding 

The genetic system environment for this example was set as follows: Population size was 30, The GA was 
terminated after 200 generations or when 100% of the chromosomes in the population have the same fitness 
value, uniform crossover and mutation were adopted for generic operators. In mutation, the value of the selected 
gene with the mutation rate (1/20) was replaced by a random integer from {1, 2, 3}. A total of 10 runs of the 
algorithm was made with different random number seeds. The number of generations and whether the GA finds 
the optimal solution or not when the GA was terminated were measured and identified, respectively. The 
computational results are shown in Table 6.  The GA found the optimal solutions for all 10 runs within 115 
generations. The optimal solution to the example is summarized in Table 7. The OCS for this example is 3.3346. 
More computational experiments with comparisons of problem size, GA parameter setting, execution times, 
and frequency of obtaining optimal solutions are performed in the next section. 

 
Table 6. Computational results for the application 

Runs 1 2 3 4 5 6 7 8 9 10 
The number of generations at 

termination of GA 115 87 102 95 66 91 107 74 52 73 

Optimal or not yes yes yes yes yes yes yes yes yes yes
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Table 7. Summarization of results 

Segments Technical attributes Alternatives Customer satisfaction level Cost

1 

Washing quality (%) 95% 0.4844 4 
Noise level (dB) 60dB 0.1214 2 

Washing time (min) 35min 0.4754 2 
Rinsing quality (%) 95% 0.5220 3 

Clothes damage rate (%) 1% 0.3005 1 

2 

Washing quality (%) 92% 0.3459 3 
Noise level (dB) 54dB 0.0014 3 

Washing time (min) 39min 0.3486 1 
Rinsing quality (%) 85% 0.4210 4 

Clothes damage rate (%) 1% 0.3139 1 

4. Computational Experiments 

To test the computational performance of the proposed GA methodology, all of the developed procedures 
were computerized and run for a range of multi-segment market QFD planning scenarios. All procedures were 
coded using MATLAB and executed on a PC with an Intel Core i3-2100 CPU (3.10 GHz) processor and 8 GB 
RAM.  

The following combinations were considered to examine the behavior of the proposed algorithm with 
regard to both problem size and budget availability, 

 
i) number of market segments ∈ {10, 15} 
ii) number of TAs ∈ {15, 30} 
iii) number of alternatives for each TA ∈ {5, 10} 
iv) budget availability factor ∈ {30%, 50%}. 
 
A fractional factorial design has been used to plan the experiments. In this experiment, there are four 

factors, each of which has two levels: (1) number of market segments; (2) number of TAs; (3) number of all 
alternatives for each TAs; and (4) budget availability factor. Table 8 shows the orthogonal array OA (8,4,2,3) 
—in this notation, 8 is the number of the runs; 4 is the number of the factors; 2 is the number of the levels; and 
3 is the strength, which is the number of columns where an equal number of times is guaranteed to see all 
possibilities. The per-level combination factors are converted into problem types. The array rows represent the 
conditions for experimentation. The columns of the orthogonal array correspond to the different variables or 
factors which are being analyzed for their effects. The entries in the array specify the levels at which the factors 
are to be applied.  

Each combination is referred to as a problem type. The budget availability factor is defined as a percent 
value θ such that the budget for a multi-segment market is set equal to B=θA, A being the average cost for all 
alternatives of all TAs in the multi-segment market. The objective function coefficients and the costs for all 
alternatives of all TA in each combination are generated from the discrete uniform generator U (0.001, 0.550) 
and U (2, 5), respectively in reference to the example introduced to section 3 in this paper. Ten problems were 
generated for each combination, giving a total of 80 problems for this experimentation.  

 
Table 8. OA (8,4,2,3) 

0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 1 

 
In this experimentation, the proposed GA was run once for each of 10 problems for each combination, 

giving a total of 80 problems. The population size is 100. Each run terminated when either 105 non-duplicate 
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chromosomes were generated or 90% of chromosomes in the population had the same fitness value. The 
percentage gap, the CPU time and the number of generations which the GA takes to first reach the termination 
rule for 10 problems for each combination, as well as the number of instances (out of 10) for which, if known, 
the GA finds the optimal solution values were measured as shown in Table 9.  

The quality of solutions is measured by a gap which is defined as truncated hundredths of one percent of 
the difference between the value of a solution obtained by the GA and the value of an optimal solution compared 
to the value of an optimal solution: 

 Gap = The value of an optimal solution − The value of a solution obtained by GAThe value of an optimal solution × 100(%) 

 
The results for all the 80 problems in Table 9 relate to using ‘bintprog’, a solver in the MATLAB 

Optimization Toolbox to solve problems to optimality. It is shown in Table 9 that in all the problem types, the 
average percentage gap produced by the GA is within 0.01681 (%) as well as the number of problem types in 
which the number of instances (out of 10) for each problem type which the GA finds the optimal solution is 
greater than or equal to 5 is 5. Especially, the number of these instances for the two problem types with 10 
segments, 15 TAs, 5 levels, and 30% budget level, and 15 segments, 15 TAs, 5 levels, and 50% budget level is 
9.  

In addition to the quality of the solution obtained from the GA, the computational performance was 
measured by computation times in seconds and the number of generations in the case that 90% of chromosomes 
in a population have the same fitness value as shown in Table 9. In the range of this experiment, computation 
times appear to increase with increasing the problem size which is exponentially proportional to the number of 
segments, TAs, and levels. Finally, the budget availability does not seem to have a significant influence on the 
computational results. Fig. 3 shows the variation of computation time with problem size. 

Summarily, the results obtained by the GA indicate that the GA is very effective for the various instances 
of each problem type. 

 
Table 9. Computational results 

Problem Types Measures 

Segment (t) TA (j) 

The number 
of 

alternatives 
for TA (k) 

Budget 𝜃 
(%) 

CPU time 
(second) 

The number of generations 
in the case that 90% of 

chromosomes in a 
population have the same 

fitness value. 

optimal/non-optimal Gap (%)

10 15 5 30 

88.3688 1546 optimal 0 
92.148 1584 optimal 0 
82.7337 1451 optimal 0 
80.7036 1405 non-optimal 0.00035 
83.0783 1484 optimal 0 
74.1593 1291 optimal 0 
85.2835 1495 optimal 0 
77.9642 1349 optimal 0 
76.7367 1333 optimal 0 
77.6225 1345 optimal 0 

average 81.88 1428 
9 (the number of 

instances the GA finds 
optimal solution) 

0.00035 

10 15 10 50 

224.4602 3993 optimal 0 
253.754 4496 optimal 0 
228.3355 4014 non-optimal 0.00053 
247.7869 4346 non-optimal 0.00173 
246.2015 4395 optimal 0 
229.6935 4085 non-optimal 0.00464 
224.3462 3578 non-optimal 0.0062 
224.1264 3685 optimal 0 
254.1955 4097 optimal 0 
276.0705 4453 non-optimal 0 

average 240.90 4114 
5 (the number of 

instances the GA finds 
optimal solution) 

0.00133 
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10 30 5 50 

330.2298 - non-optimal 0.00072 
320.8412 - optimal 0 
325.6341 3019 optimal 0 
319.083 2952 optimal 0 
305.5215 2788 non-optimal 0.00273 
307.6115 2871 non-optimal 0.00094 
288.891 2689 optimal 0 
286.509 2607 non-optimal 0.01138 
309.4933 2839 optimal 0 
321.7561 2954 optimal 0 

average 311.56 2840 
6 (the number of 

instances the GA finds 
optimal solution) 

0.00160 

10 30 10 30 

942.6181 8402 non-optimal 0.01516 
837.1006 7419 non-optimal 0.00246 
944.9026 8399 non-optimal 0.00242 
911.9529 8158 optimal 0 
1035.70 9179 non-optimal 0.00786 
966.3991 8583 non-optimal 0.00758 
920.5992 8231 optimal 0 
961.863 8588 non-optimal 0.00422 
1045.20 9257 non-optimal 0.00067 
878.8308 7806 non-optimal 0.0307 

average 944.52 8402 
2 (the number of 

instances the GA finds 
optimal solution) 

0.00710 

15 15 5 50 

201.5277 2253 optimal 0 
154.7709 1870 optimal 0 
162.0191 1789 optimal 0 
183.6365 2153 optimal 0 
185.7094 2181 optimal 0 
167.7273 2015 non-optimal 0.00266 
169.6421 2128 optimal 0 
194.2244 2307 optimal 0 
188.7768 2275 optimal 0 
208.0155 2515 optimal 0 

average 181.60 2149 
9 (the number of 

instances the GA finds 
optimal solution) 

0.00027 

15 15 10 30 

461.5897 5546 non-optimal 0.0023 
449.1294 5416 non-optimal 0.01096 
543.2074 6542 optimal 0 
579.5907 7062 optimal 0 
448.4979 5461 non-optimal 0.12259 
535.3183 6487 non-optimal 0.01698 
537.2442 6662 non-optimal 0.00062 
519.1879 6362 non-optimal 0.00125 
567.8557 6942 non-optimal 0.01312 
515.1616 6317 optimal 0 

average 515.68 6280 
3 (the number of 

instances the GA finds 
optimal solution) 

0.01681 

15 30 5 30 

610.2242 4173 optimal 0 
610.7684 4226 optimal 0 
601.3839 4201 optimal 0 
548.7335 3725 non-optimal 0.02031 
584.882 4043 optimal 0 
575.0002 3986 non-optimal 0.00202 
617.867 4367 optimal 0 
564.4559 3855 non-optimal 0.01905 
628.1748 4325 non-optimal 0.01 
611.4201 4291 optimal 0 

average 595.29 4119 
6 (the number of 

instances the GA finds 
optimal solution) 

0.00514 
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15 30 10 50 

1906 12833 non-optimal 0.00715 
1910.2 12880 non-optimal 0.01592 
1788.9 12080 non-optimal 0.00102 
1951.4 13179 non-optimal 0.00935 
1800.1 12066 non-optimal 0.0139 
1876.7 12518 optimal 0 
1837.5 12529 optimal 0 
2053.7 12727 non-optimal 0.00222 
1852.5 12426 non-optimal 0.00125 
1909.4 13010 non-optimal 0.00169 

average 1888.64 12625 
2 (the number of 

instances the GA finds 
optimal solution) 

0.00525 

 

 
Figure 3. Computation Time vs Number of Segments 

5. Conclusions 

GA approach was developed to solve the problem of selecting the optimal set of TA alternatives with 
discrete values for each segment of the multi-segment market to maximize the OCS of the multi-segment market 
while not exceeding the budget available for the multi-segment market.  

To explain the application of the proposed GA approach in this study, a simple example of determining 
the optimal levels of five TAs of a washing machine according to the five CRs in two market segments was 
introduced. A total of 10 runs of the algorithm was made with different random number seeds. The GA found 
the optimal solutions for all 10 runs within 115 generations.  

To examine the behavior of the proposed algorithm as a function of both the size of the problem and the 
availability of the budget, a fractional factorial design was applied to plan the experiments. In this experiment 
the following combinations were run: (i) number of market segments ∈ {10, 15}; (ii) number of TAs ∈ {15, 
30}; (iii) number of alternatives for each TA ∈ {5, 10}; (iv) budget availability factor ∈ {30%, 50%}.  
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It was measured that the average percentage gap obtained by the GA is within 0.017 (%) as well as the 
number of problem types in which the number of instances (out of 10) for each problem type which the GA 
finds the optimal solution is greater than or equal to 5 is 5.  

Computation times seem to increase with increasing the problem size which is exponentially proportional 
to the number of segments, TAs, and levels. The budget availability does not seem to have a significant 
influence on the computational results. The computational results obtained by the GA indicate that the GA is 
very effective for instances of each problem type, judging by the small percentage gaps and the reasonable 
computation times. 

After developing and launching products for each segment in a multi-segment market targeted by a 
company, the products for each segment must be supplemented according to the change of customer 
requirements over time. As such, deciding how companies should complement their products over a planning 
period horizon for each market segment is a critical issue in the face of an ever-changing global competition 
situation. As a future research theme, it seems to have considerable value in the research field. 
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