This paper considers the rail crane scheduling problem which is defined as determining the sequence of loading/unloading container on/from a freight train. The objective is to minimize the weighted sum of the range of order completion time and makespan. The range of order completion time implies the difference between the maximum of completion time and minimum of start time of each customer order consisting of jobs. Makespan refers to the time when all the jobs are completed. In a rail freight terminal, logistics firms as a customer wish to reduce the range of their order completion time. To develop a methodology for the crane scheduling, we formulate the problem as a mixed integer program and develop three metaheuristics, namely, genetic algorithm, simulated annealing, and tabu search. To validate the effectiveness of heuristic algorithms, computational experiments are done based on a set of real life data. Results of the experiments show that heuristic algorithms give good solutions for small-size and large-size problems in terms of solution quality and computation time.
We analyze queueing model with priority scheduling by supplementary variable method. Customers are classified into two types (type-1 and type-2 ) according to their characteristics. Customers of each type arrive by independent Poisson processes, and all customers regardless of type have same general service time. The service order of each type is determined by the queue length of type-1 buffer. If the queue length of type-1 customer exceeds a threshold L, the service priority is given to the type-1 customer. Otherwise, the service priority is given to type-2 customer. Method of supplementary variable by remaining service time gives us information for queue length of two buffers. That is, we derive the differential difference equations for our queueing system. We obtain joint probability generating function for two queue lengths and the remaining service time. Also, the mean queue length of each buffer is derived.
In this paper, scheduling problem is dealt for the minimization of due date penalty for the customer order. Multiproduct batch processes have been dealt with for their suitability for high value added low volume products. Their scheduling problems take minimization of process operation for objective function, which is not enough to meet the customer satisfaction and the process efficiency simultaneously because of increasing requirement of fast adaptation for rapid changing market condition. So new target function has been suggested by other researches to meet two goals. Penalty function minimization is one of them. To present more precisely production scheduling, we develop new scheduling model with penalty function of earliness and tardiness We can find many real cases that penalty parameters are divergent by the difference between the completion time of operation and due date. That is to say, the penalty parameter values for the product change by the customer demand condition. If the order charges different value for due date, we can solve it with the due date period. The period means the time scope where penalty parameter value is 0. If we make use of the due date period, the optimal sequence of our model is not always same with that of fixed due date point. And if every product have due date period, due date of them are overlapped which needs optimization for the maximum profit and minimum penalty. Due date period extension can be enlarged to makespan minimization if every product has the same abundant due date period and same penalty parameter. We solve this new scheduling model by simulated annealing method. We also develop the program, which can calculate the optimal sequence and display the Gantt chart showing the unit progress and time allocation only with processing data.
Kim, Kwan-Woo;Mitsuo Gen;Hwang, Rea-Kook;Genji Yamazaki
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.09a
/
pp.187-190
/
2003
Many manufacturing companies consider the integrated and concurrent scheduling because they need the global optimization technology that could manufacture various products more responsive to customer needs. In this paper, we propose an advanced scheduling model to generate the schedules considering resource constraints and precedence constraints in make-to-order (MTO) manufacturing environments. Precedence of work- in-process(WIP) and resources constraints have recently emerged as one of the main constraints in advanced scheduling problems. The advanced scheduling problems is formulated as a multiobjective mathematical model for generating operation schedules which are obeyed resources constraints, alternative workstations of operations and the precedence constraints of WIP in MTO manufacturing. For effectively solving the advanced scheduling problem, the multi-objective hybrid genetic algorithm (m-hGA) is proposed in this paper. The m-hGA is to minimize the makespan, total flow time of order, and maximum tardiness for each order, simultaneously. The m-hGA approach with local search-based mutation through swap mutation is developed to solve the advanced scheduling problem. Numerical example is tested and presented for advanced scheduling problems with various orders to describe the performance of the proposed m-hGA.
This paper deals with a realistic production scheduling under a make-to-order production environment. The practical case is studied on the transformer winding process in the 'H' company. The transformer winding is a process that rolls a coil that is coated with an electric insulation material in order to generate the required voltage using the voltage fluctuation. This process occupies an important position among the production processes in the transformer manufacturing company. And this process is composed of parallel machines with different performances according to the voltage capacity and winding type. In this paper, we propose a practical heuristic algorithm for production scheduling to satisfy the customer’s due date under a make-to-order production environment. Also, we implement the production scheduling system based on the proposed heuristic algorithm. Consequently, the proposed heuristic algorithm and the implemented production scheduling system are currently working in the transformer production factory of the ‘H’ company.
The importance of efficient container transportation becomes more significant each year due to the constant growth of the global marketplace, and studies focusing on shipping efficiency are becoming increasingly important. In this paper, we propose an approach for vehicle scheduling that decreases the number of vehicles required for freight commerce by analyzing and scheduling optimal routes. Container transportation can be classified into round and single-trip transportation, and each vehicle can be linked in a specific order based on the vehicle state after completing an order. We develop a mathematical model to determine the required number of vehicles with optimal routing, and a heuristic algorithm to perform vehicle scheduling for many orders in a significantly shorter duration. Finally, we tested some numerical examples and compared the developed model and the heuristic algorithm. We also developed a decision support system that can schedule vehicles based on the heuristic algorithm.
Keeping the promised delivery date for a customer order is crucial for a company to promote customer satisfaction and generate further businesses. For this, a company should be able to quote the delivery date that can be achieved with the capacity available on the shop floor. In a dynamic make-to-order manufacturing environment, the problem of determining a delivery date for an incoming order with consideration of resource capacity, workload, and finished-product inventory can hardly be solved by an analytical solution procedure. This paper considers a situation in which a delivery date for a customer order is determined based on a job schedule, and presents the SimTriD algorithm that provides the best scheduling for determining a delivery date of customer order through the job schedule that efficiently utilizes manufacturing resources with consideration of interacting factors such as resource utilization, finished-product inventory, and due date.
This paper considers a scheduling problem where a customer orders multiple products(jobs) from a production facility. The objective is to minimize the sum of the order(batch) completion times. While a machine can process only one job at a time, multiple machines can simultaneously process jobs in a batch. Although each job has a unique processing time, we consider the case where batch processing times are identical. This simplification allows us to develop heuristics with improved performance bounds. This problem was motivated by a real world problem encountered by foreign electronics manufacturers. We first establish the complexity of the problem. For the two parallel machine case, we introduce two simple but intuitive heuristics, and find their worst case relative error bounds. One bound is tight and the other bound goes to 1 as the number of orders goes to infinity. However, neither heuristic is superior for all instances. We extend one of the heuristics to an arbitrary number of parallel machines. For a fixed number of parallel machines, we find a worst case bound which goes to 1 as the number of orders goes to infinity. Then, a tighter bound is found for the three parallel machine case. Finally, the heuristics are empirically evaluated.
Complex scheduling problems are related to planning, scheduling, constraint satisfaction problems, object-oriented concepts, and agent systems. Human preference-driven scheduling technique was to solve complex scheduling problems using constraint satisfaction problems and object-oriented concepts. We have tried to apply human preference-driven scheduling technique to reservation problems. For customer's satisfaction, we have considered customer's preferences in the reservation scheduling. The technique of reservation scheduling proposed in this thesis is based on object-oriented concepts. 1'o consider the over all satisfaction, the events of every object are alloted to the board along its priority. Constraints to reservation scheduling are classified to global and local. The definition of board and information of every event are global constraints and the preferences to object's board slots are local constraints. We have applied look-ahead technology to reservation scheduling in order to minimize backtracking not to fail the allotment of events.
Journal of Korean Society of Industrial and Systems Engineering
/
v.29
no.1
/
pp.26-33
/
2006
The potential needs as well as visible needs of customer should be considered in order to research and analyze of the customer data. The methods to analyze customer data is classified into customer segmentation, clustering analysis model, forecasting customer response probability model, analysis of the customer break rate model and new customer analysis model by the purpose. In this study, we developed the CW-CLV (Correlation Weight Customer Lifetime Value)method that used AHP(Analytic Hierarchy Process)rule for enhance the reliability of customer data and quantitative analysis of the customer segmentation, based on CLV(Customer Lifetime Value). We suggest to new variables and methodology from determined CW-CLV coefficients, because all of companies respect to the diversified customers classification and complexity of consumers needs. Finally, we unfolded any company's scheduling added new methodology using simulation and leaded conclusion about the new methodology.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.