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ABSTRACT

This paper considers a scheduling problem where a customer orders multiple products (jobs) from a
production facility. The objective is to minimize the sum of the order (batch) completion times. While
a machine can process only one job at a time, multiple machines can simultaneously process jobs in a
batch. Although each job has a unique processing time, we consider the case where batch processing
times are identical. This simplification allows us to develop heuristics with improved performance
bounds. This problem was motivated by a real world problem encountered by foreign electronics
manufacturers.

We first establish the complexity of the problem. For the two parallel machine case, we introduce two
simple but intuitive heuristics, and find their worst case relative error bounds. One bound is tight
and the other bound goes to 1 as the number of orders goes to infinity. However, neither heuristic is
superior for all instances. We extend one of the heuristics to an arbitrary number of parallel ma-
chines. For a fixed number of parallel machines, we find a worst case bound which goes to 1 as the
number of orders goes to infinity. Then, a tighter bound is found for the three parallel machine case.
Finally, the heuristics are empirically evaluated.

Keywords: Scheduling, Heuristics, Complexity Analysis

1. Introduction

In the typical customer order scheduling problem, each order has a set of products

(jobs), called a batch, which needs to be processed. Once all jobs in the batch are com-
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pleted, the entire batch is dispatched. The composition of the jobs in the batch is pre-
specified. No setup times are assumed between different jobs or different batches.
Also, the objective is associated with the completion time of the batches instead of the
completion time of each job. The completion time of the batch is the latest completion
time of any job in the batch. While a machine can process only one job at a time, sev-
eral machines can simultaneously process jobs in a given batch.

This paper considers a variation of this customer order scheduling problem
where the total processing time of each batch is identical. This variation is motivated
by a real world problem of an electronics manufacturing company that produces per-
sonal computer monitors and owns several subsidiaries located in foreign countries.
Due to high transportation costs, the manufacturing facility only ships full container
units. Exporting in full container units is common practice in some of the consumer
electronics industry. Consequently, subsidiaries wait until their purchase order is
large enough to fill a container. For most of the products produced, the size of the
product is approximately proportional to the time spent. Hence, producing products
for any container usually takes about the same time. As a result, each order takes ap-
proximately the same amount of time.

No previous research considers this version of customer order scheduling prob-
lem where batch processing times are identical for all batches. However, several stud-
ies consider the more general customer order scheduling problems. The customer
order scheduling problem is different from most of other batch scheduling problems
because the objective is associated with the completion time of the batches instead of
the completion time of each job. Julien and Magazine [12] study a single machine
problem where the objective is to minimize the total batch completion time. A job-
dependent setup time is assumed between two different types of jobs. They develop a
dynamic programming algorithm that runs in polynomial time for the problem
where there exist two types of jobs and the batch processing order is fixed. Coffman
et al. [6] consider a similar problem where the batch processing order is not fixed.
Baker [2] also considers a problem similar to Coffman et al. [6]. However, for one type
of job, those jobs processed during the same production run are not available until
the completion of the production run. This restriction is called batch availability. For
batch availability, see Santos and Magazine [15]. Gupta et al. [11] consider the single

machine problem where each order must have one job from each of several job
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classes. Also, there is a setup time whenever the job class changes. Gerodimos et al. [8]
study single machine problems where each batch has one common job and one dis-
tinct job. Ding [7] and Liao [13] also examine similar problems.

Blocher and Chhajed [3] examine the customer order scheduling problem in the
parallel machine environment where the objective is to minimize the sum of batch
completion times. They show that the recognition version of the problem is unary
NP-complete for the three parallel machine case and is at least binary NP-complete
for the two parallel machine case. Also, they develop several heuristic methods and
two lower bounds. Blocher et al. [4] extend the problem to a job shop. Yang and Pos-
ner [17] consider the same problem with two parallel machines, and introduce three
simple heuristics and find tight worst case bounds on relative errors of 2, 9/7, and 6/5,
respectively. Yang [16] establishes the complexity of different customer order sched-
uling problems. When the machine-job assignment is fixed, Roemer and Ahmadi [14]
show that the recognition version of the problem is unary NP-complete for the two
parallel machine case with the objective of minimizing the sum of batch completion
times. Ahmadi et al. [1] develop three lower bounds and several heuristics for the
problem with the objective of minimizing the sum of weighted batch completion
times.

We first introduce some notation. Then, we establish the complexity of the prob-
lem and review a few properties of an optimal schedule. For the two parallel machine
case, we introduce two simple but intuitive heuristics, and find their worst case
bounds on relative error. One bound is tight and the other bound goes to 1 as the
number of batches goes to infinity. We show that neither heuristic performs better for
all instances. One of the heuristics for the two parallel machine case is extended to an
arbitrary number of parallel machine case. For a fixed number of machines, we find a
worst case bound which goes to 1 as the number of batches goes to infinity. The
bound is tightened for the three parallel machine case. Finally, the heuristics are em-

pirically evaluated.

2. Notation

The decision variables in our models are
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oy = schedule of all jobs on machine k for ke M where M = set of machines
= {1,2, ---, m} and m =number of machines
o = schedule of all jobs =(o,, o, ,*+, 7,,)-

Other notation that is used in this work include

n = number of jobs

N =set of jobs ={1, 2, ---, n}

b = number of batches

B = set of batches ={1, 2, ---, b}

n, = number of jobs‘in batch i for ieB

B,  =setofjobsinbatch i for ieB={Xn+1, X n+2 -, Z_ n}

B.(o) =first job selected for processing in B; for ieB

p; = processing time ofjob j for jeN

P, =X, p; = total processing time of batch i< B

C,(o,) = completion time of batch i on machine k for ieB and ke M
C/(o) =completion time of batch i inschedule ¢ for ie B = max,_, C/(5,)

*

z = value of optimal schedule.

We represent (o) as f, and C,(o) as C; when there is no ambiguity. The
standard classification scheme for scheduling problems (Graham et al. [10]) is
a,la,la,, where a; describes the machine structure, a, gives the job characteris-
tics or restrictive requirements, and «, defines the objective function to be mini-
mized. In the first field, P means the parallel machine structure, and the number
after P indicates a fixed number of machines rather than an arbitrary number. Also,
P =P isplaced in the a, to describe the job characteristic such that all batch proc-
essing times are identical. Finally, we extend this scheme to provide for batch com-
pletion times by using C, in the a, field. This notation is used to eliminate the
confusion between our problem and the classical scheduling problem. For example,
P2IP =PI 2C, is the problem where there exist two parallel machines, all batch

processing times are identical, and the objective is to minimize the total batch comple-

tion time.
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3. Complexity and Basic Results

The following theorem establishes the complexity of problem P2IP,=PIXC B -

Theorem 1 : The recognition version of problem P2I|P, =P]| 2.Cy s at least binary NP-
complete.
Proof. Note that the recognition version of problem P2||C,,, isbinary NP-complete.

max

By letting b=1, problem P2|C

max

reduces to P2IP, =PI 2C, . Hence, P2|IC,,
isa Special caseof P2|P, =Pl 2C, . U

Similarly, the following theorem establishes the complexity of problem
P3IP =PIEC, .
Theorem 2 : The recognition version of problem P3|P, =P|¥C 5, 18 unary NP-complete.
Proof. Note that the recognition version of problem P3{|C_,
By letting b=1, problem P3{|C_,

. is unary NP-complete [5].

reduces to P3|P. =13IZCBi. Hence, P3||C,,,, is
a special case of P3|Pi:I3IZCBi. U

X

Note that there is no restriction on delaying jobs. Hence, for problem P|ZC,,
there exists an optimal schedule without inserted idle time. As a result, we only con-
sider those schedules where there is no inserted idle time.

Also, we say that batch ie B is separated if on some machine ke M, jobs in

batch i are not processed consecutively. Then, we have the following property for
an optimal schedule.

Lemma 1 : (Blocher and Chhajed [3]) For problem P||XC,, there exists an optimal
schedule where no batch is separated.

As a result of Lemma 1, we only consider those schedules where batches are not
separated.

4. Two Parallel Machines

In this section, we introduce two heuristic procedures to find a schedule for problem

P21P =PI 2.C; . For each of the heuristics, a worst case bound on relative error is
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presented.

4.1 The Job LPT Heuristic

In order to find a schedule for problem P2IP,=PIXC;, we introduce a heuristic

procedure that has the tight worst case bound on relative error of 7/6. This heuristic is
first introduced by Blocher and Chhajed [3] for problem P{|XC, . For problem

P2||12C s » Yang and Posner [17] show that the tight worst case bound for the heuris-

tic is 6/5 (they call the heuristic H2). Hence, we establish that the heuristic has the
tighter worst case bound on relative error with P2|P, =PI ¥ C 5 thanwith P2||XC; .

To find a schedule, the heuristic tries to obtain the maximum benefit of the LPT
(Longest Processing Time First) rule. For this rule, when a machine becomes available,
an unscheduled job with the longest processing time is selected for processing and
assigned to the first available machine. Based on the current partial schedule, this rule
is used to decide both the job processing order and the machine-job assignment.
Originally, the SB (Shortest Batch Processing Time First) rule is applied to determine
the batch sequence [3]. However, since P, is fixed for i=1, 2, ---, b, the LS (List
Scheduling) rule determines the order sequence. For this rule, an unscheduled job
with the smallest index is scheduled first when a machine is available. We now for-

mally describe the heuristic.

Heuristic BC
0.For i=1, 2, ---, b, reindex the jobs so that p, >p,, if j, j+1€B,.
Set i=j=1 and F =F =0. '
1. Select the first available machine k =argmin{F,, F,}. Choose job j in batch
i and assign it to machine k.Set F, =F +p, and j=j+1.

Repeat Step 1 until all jobs in batch i are scheduled.
2.5et C, =max{F, E}.

If i=b, then output ZLC,. and stop.
Otherwise, set i=i+1 and go to Step 1.

In Step 0, reindexing the jobs in each batch i=1, 2, -, b requires O(Zf: 1 logn,)

time. Since all other operations require O(n) time, the time requirement of BC is
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O(nlogn).

In order to establish a worst case bound of heuristics, we define some notation
used throughout the paper. This type of notation is first introduced in Yang and Pos-
ner [17]. For k, i€ B, suppose k is the last batch to complete before i in schedule

o.Let

C(o)-C,(0) if only one machine processes batch i
|C;(0,)-C,(0,)! if both machines process batch i.

@(a)={
For each ieB, 6,(o) is the absolute difference between completion time of

batch i on machine 1 and machine 2 in o .If batch i is processed on only one ma-

chine, then §,(o) is the difference between the completion time of batch i and the

completion time of the last batch to complete before i (see Figure 1). If batch i is

the first batch to complete, then we assume C,(c)=0. We use §,(c) to provide a

description of the completion time of batch i. If G B is the set of batches that

complete no later than batch i, then

€ (o) = 2utec DL FO).

5 @

Notice that since P, is known for ¢=1, 2, ---, i, C,(0) only depends on the
size of &5,(c).For ieB,let C, be the minimal makespan of just the jobs in batch i
and let 7' be the corresponding schedule. Similarly, let C- be the makespan of the
schedule generated by the LPT rule for batch i, and let ' be the corresponding
schedule. Let 8, = 2C,-P and &"=2C--P for ieB. For ieB, &, is the differ-
ence between completion time of batch i on the two machines in 7'. Similarly, &"

is the difference between completion time of batch i on the two machinesin »'.
For notational convenience, let o* be the schedule found by BC and z* be
total completion time of this schedule. Also, let & = §,(¢*°) for ie B. Throughout

this section, we assume that in ¢”¢, batches complete in their index order and

P; 2P, if j, j+1€ B;.To establish that the worst case bound of 7/6 for BC, we review
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Time

(a) (b)

Figure 1. Examples of &, where the last two jobs processed in batch i are j and £: (a)

batch i is processed by both machines ; {b) batch i is processed only by ma—
chine 1 and ¢ is the last job to complete in batch k (Yang and Posner [17]).

some of the preliminary results concerning &/ . These results are used in the analy-
sis of BC for problem P2||XC, in Yang and Posner [17]. We use them in the analy-
sis of BC for problem P2IP,=PI¥C s since they are of the same heuristic.

For the proofs of the following two lemmas, see Yang and Posner [17]. The next

lemma establishes upper bounds for §°° according to completion times of schedules

y' and 7' and an upper bound of & 's from two consecutively processed batches.

Lemma 2 : (Yang and Posner [17]) If C'=C, for i-1, i€ B, then &€ < Z;’zlé‘; +85.

Alternatively, if C/>C, for i—~1,ieB, then 8°° < max{s’S, P/5). Also, 8% +68'¢
<P for i-1,ieB.

Much of our analysis is based on which job is the last one to complete in a given

batch in ¢ . The following lemma establishes some preliminary results for various
possible final jobs.

Lemma 3 : (Yang and Posner [17]) (1) Ifin o®, B, is the last job to complete in batch
ieB, then 5’ +6 < Zf:léf ;) Ifin ™, B +1 is the last job to complete in batch

ieB, then 57 <& ; (3) If in o, P +j is the last job to complete in batch icB,
then 8P <P/(j+1).

In &, let the batches complete in the order of v,, v,, :--, v,.From (1),
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zBC_z,l (o)

*

D YA
_bP 4+ +(b-1)P+ 87+ 4+ 2P+ 82 + P+ 55C
- bP+5, +(b-1)P+5, +--+P+3,

bl3+(b—1)13+--~+I3+Zf_’:15fC
b1—3+(b—1)1_3+-~-+13+2f:15[ .

2

We review the following remark that is used to establish the bound of BC.

Remark 1. (Graham [9]) The worst case bound of the LPT rule for the problem P||C, is
(4m—-1)/(3m).
The following four propositions are used to establish a worst case bound of BC.

Each proposition finds the bound for a set of problems with the different number of

batches. We begin with the case where there exists only one batch.

Proposition1:If b=1, then 2°/z*<7/6 for problem P2|P,=PI3C, .
Proof. If b=1, then problem P2IP =PIXC 5 becomes identical to problem
P2||C,..,and as a result of Remark 1, z%¢/z*<7/6. [

Proposition 2:If b=2, then 2z /2*<7/6 for problem P21P,=PI¥C, .
Proof. From (2), we need to prove that
2% 3P+8 455 7

=2 < 3
z* 3P+6,+8, 6 )

Suppose in 6°, batch 2 completes when job S, completes, then Lemma 3 im-

plies that 6 +8,° <&, +6, . Hence, from (3),

3P+85+5)°
3P+6, +0,

Alternatively, if in 5°C, batch 2 completes when job S, +1 or larger finishes



56

YANG

processing, then we consider two cases. First, if C-=C,, then Lemma 2 implies

85€ <8 +8,. Also, from Lemma 3, 82 < P/2. Hence, from (3),

3P+68% +55¢ 8¢
——H—Sl-i-—_
3P+6, +6, 3P

s1+P—/__2 =

7
3P 6

On the other hand, if C->C,, then Lemma 2 implies §7° <P/5. Also, from
Lemma 3, 8¢ <3/°. Hence, from (3),

3P + 5le + 5,;“ <1+ SE¢ +_5ZBC
3P+6, +6,

3P

Sl+——-2P15 = z<Z
3P 15 6
Hence, the result is established from (2). []

Proposition 3:If b=3, then z°[z* <7/6 for problem P2|P, =P| 2Cy .
Proof. From (2), we need to prove that

2% 6P+ + 8 +55°
Z*

100 1% (T @
6P +4, +5, + 9, 6
Note that if in 6°, batch 3 completes when job S, +1 or larger finishes proc-

essing, then from Lemma 3, &2 <P/2. Further, since 52 /(3P)<(P/2)/(3P)=1/6,
(3P +687°)/(3P) = 7/6. Proposition 2 implies that

3P+ +8° 7
3P+6, +5,+65, 6

Hence, we have the result.

Now, we only need to consider the case where in 6°¢, batch 3 completes when
job pB, completes. From Lemma 3, 8 +65€ <6 +6, +5,, and from Lemma 2,
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8P¢ <P . Hence, from (4),

6P+ 87 + 85 + 55° 5C 7
—_— - =<1+ 2-<—.
6P+, +8, +6, 6P " 6

Hence, the result is established from (2). [

Proposition 4 : If b24, then z° /z* <7/6 for problem P2|P. =Pl 2Cy .

Proof. If b=4, then Lemma 2 implies that &7+ 87 <P. Since (5 +85)/(6P) <
P/6P)=1/6, Proposition 2 implies z*¢/z* <7/6. Similarly, if b=5, then Lemma 2
implies that &/ +6;° <P. Since (57 +6/)/(6P)< P/(6P)=1/6, Proposition 3 im-
plies z° /z*<7/6. We can repeat this argument for the other cases where b>6. [J

Finally, the following theorem establishes the worst case bound of the heuristic.

Theorem 3 : For problem P21 P, =P13XC, , z° /z* <7/6 and this bound is tight.

Proof. The result follows from Propositions 1 ~ 4. The bound is tight because LPT rule
for P2||C,, hasa tightbound of 7/6 [9]. [

4.2 The Set LPT Heuristic

In this section, we present a new heuristic procedure to find a schedule for problem

P2I1P =PI 2.C; . This heuristic has a worst case bound on relative error of 1+ (b+6)
/{6(b* +b)} where b is the number of batches. First, the LPT rule is applied to each
batch. Then, batches are reindexed such that C <CL <.+ < C/ and are sequenced in

their index order. Each batch is partitioned into two sets using the LPT rule. The par-
titioning process assumes that processing of a batch can start on both machines at
time zero. The set with the larger total processing time is assigned to the machine that
becomes available first. The set which has smaller processing time is assigned to the

other machine. Now, we formally describe the heuristic.

Heuristic H2
0.For i=1, 2, -+, b, reindex the jobs so that p, > Pia if j, j+1eB,.
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For v=1,2,-,b,set F,=F, =0.
Set i=j=v=1 and F =F, =0.
1. Assignjob j inbatch v to the first available machine k=argmin{F,, F,,}.
Set F, =Fk'v+pj and j=j+1.
Repeat Step 1 until all jobs in batch v are scheduled.
2.1f v<b,thenset v=v+1 and go to Step 1.
3. Reindex batches so that max{F,, F,}<max{F,, E,}<---<max{F,, F,}.
4.Find ¢ and u suchthat £=argmin{F,, F,} and u=argmin{F;, F,}.
Set F,=F+F,,; and F,,=F,_, +F,.
5.5et C, =max{F, F}.
6.If i<b, then go to Step 4.
Otherwise, output ZLC,. and stop.
In Step 0, reindexing the jobs in each batch i=1, 2, ---, b requires O(Zfﬂni
logn,) time. In Step 3, reindexing batches requires O(blogb) time. Since all other

operations require O(n) time, the time requirement of H2is O(nlogn).

For the rest of this paper, we assume without loss of generality that when both
machines are available for processing at the same time, a job is scheduled on machine
1 first in a schedule. For notational convenience, let "* be the schedule found by

H2 and z"* be total completion time of this schedule. Also, let 5 = §,(c'"*) for

i € B. Throughout this section, we assume that in ¢, batches complete in their in-

dex order and p;>p,, if j, j+1eB,. In the following lemmas, we prove that

5,.L < 5, +P/6 for i=1, 2, ---, b. This result is a critical part of the proof for the worst

case bound.

Lemmad:If n,<4 for icB,then C,=C’.
Proof. Recall that 7' is the schedule corresponding to C, and y' is the schedule
corresponding to C;. Observe thatif n, <3, then ¥ mustbe the sameas y'.

If n, =4, then we consider two cases. First, suppose that p, 2p, ., +p,.,. Then,
an optimal schedule is 7' =(7;, 72)=((8), (B +1, B,+2, B,+3)), and this is the

same as an LPT schedule. Second, suppose that p, <p,., +pP,.,. Then, an optimal
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scheduleis 7' =((8, B.+3), (B +1, B +2)), and this is identical to an LPT schedule.

}7i
Therefore, C,=C-. O

Lemma5: If n,=5 for ieB and p, 2p,,,+p,.,, then C,=C;.

Proof. If p, 2p,..+p,., +Pj .5, then an optimal schedule 7 =, ) =W(B), (B +1,
B +2, B, +3, B;+4)), and this is the same as an LPT schedule. Alternatively, if p 5 <
PpntPpaa +pﬂ;+$' then an optimal schedule 7' =((8, £ +4), (8, +1, B +2, B +3)),
and this is identical to an LPT schedule. Therefore, C = CiL g

Lemma6: If n,=5, p, <p, ,+p,,,, andin ¥, the first two jobs in batch i are proc-
essed on the same machine for i€ B, then 5" <5, +P/6.

Proof. Without loss of generality, we assume that in 7', jobs B and S +1 are
processed on machine 1. Then, there exists only one possible optimal schedule
V=, B)=(B, Bi+D), (B+2, B,+3, B +4). Thisisdueto p, +py, =Py, +Pyes-
Suppose Ps >Pps2tPp.s- Then, a better schedule is obtained by scheduling jobs
B;+1 and B +4 on machines 2 and 1, respectively. Contradiction. Hence, p 5 <Pp2

+Pga-

For the case where p, <p, ., +p,.,, we consider two cases. First, if Py +Psu> Ppiat

PaestPgaar then p, o, +p, ., +Ppea < P/2. Hence, Pps < P/6, and the result holds.
Second, if ps +P4. SPpi2tPgiat Py, then 5, =Ppi2tPpis TPpia—Pg —Ppa - SiNCE
PotPavi SPaatPpotPpiss PptPaeatPpa2PpatPgo a0 Ppa+Ppo+ps,

2Py +Ppe- Also, since p, <p,. +p,.,, v must be either (8, B +3, B +4),
(B+1, Bi+2)) or (B, Bi+3),(B+1, B+2, f+4)).

¥y =((B, Bi+3,B,+4),(B+1 B,+2)), then 8" =p, +P,.5+Pp.0—Pp—Pper - Hence,
oF -8, =2py —Pp) - Note that p, +p, ., >p, +P,,, and p, +p,., <P/2. If
Ppra < P/6, then the result holds from Lemma 3. Alternatively, if p fea > P/6, then
Psss>P16.Thus, 2p, —p, ) <2p,,, ~P,.s)<2AP/4-P/6)<P/6. Hence, the result
holds from Lemma 3.

Alternatively, if Y= (B, B+3), (B +1, B+2, B, +4)), then 51‘L =Pt Pre2 TPpua
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~Pp, ~Ps.s - Hence, é‘iL_é_‘izz(pﬂiﬂ_pﬂﬁS)' Note that p, +ps.52Psu+Psn - I
p/,i+l>l3/4, then p, >P/4 and pﬂi+4$P_/6. In this case, since pﬁi+4£1_’/6, the

result holds from Lemma 3. Then, we only need to consider the case where

pﬂiﬂsﬁ/él and pl,i+4>1_’/6. Since pﬂi+4>1-3/6, pﬁ+3>l3/6. Then, 2(p;..—Ps.s)
<2(P/4-P/6).Hence, the result holds. [J

Lemma?7:If n;=5, p, <py.,+p,., andin 7', the first two jobs in batch i are proc-
essed on the different machines for ic B, then 8/ <5,+P/6.

Proof. Without loss of generality, we assume that in 7', jobs B and S +1 are
processed on machines 1 and 2, respectively. Then, there are three possible schedules
of 7'.

They are 7' = (¥, 7,)=((B., B,+3, B, +4), (B+1, B+2)); (B, Bi+3), (B +1, fi+2,
Bi+4): (B B +2), (B +1, B+3, B, +4).

Casel: 7' = (B, B, +3, B +4), (B +1, B +2)).

Note that p, +ps.; <ps., +P,.,- Otherwise, a better schedule can be obtained by
scheduling job B +4 on machine 2, contradiction. Hence, ¥ is the same as ',
and C,=Ct.

Case2: 7' = (B, B +3), (B +1, B.+2, p +4)).

Note that p, +p,.s > Ps.1 +Pg.,- Otherwise, a better schedule can be obtained by
scheduling job B +4 on machine 1, contradiction. Hence, 7' is the same as y’,
and C,=CF.

Case3: 7' =((B, B+2), (B+1, B +3, p+4)

Suppose that p, +Ps., >Psa+Pses+Ppas- Then, p, . +p, s+p,. <P/2. Since
Ppa SPpos <Ppiis Ppoa < P/6. The result holds from Lemma 3. Alternatively, sup-
pose that p, +p, .0 <Py +PgstPs.a- Then, S = PpatPpistPasa—Ps —Ppas- Also,
since p, <p,.,+Ps.s, ¥ must be either (B, B +3, B +4), (B +1, f+2)) or (B,
B:+3), (B+1, B+2, B +4)).

Suppose ¥' =((B,, B.+3, B +4), (B +1, B +2)). If Pp +Ppes+Ppes <Ppa+Ps., then

Pp +PpestPsoa <P/2. Hence, Ppa <P/6 and the result holds from Lemma 3.
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Alternatively, if p, +p, . +p,., > Ppoa +Ps.0, then 8 = Ps tPsiatPpssa—Ppi—Ppaz-
Note that p,,, +p;., 2P, +Pg.s-If Py < P/6, then the result holds from Lemma 3.
Alternatively, if p,,,>P/6, then p, ,>P/6 and p,,, <(1/3)(P-P/3)=2P/9.
Thus, &/ =8, =2(P; —Ppu) <2Pp.r—Ps.s) <22P/9-P/6)=P/9. Hence, the result
holds.

Alternatively, suppose that 3’ =((8, B +3), (B +1, 5, +2, B +4)). If Py +Ppis>
Pp+Psi2t Py then PpoitPgastPpia < P /2. Hence, Ppra < P/6 and the result
holds from Lemma 3. On the other hand, if Pg +Pp43 SPgi1tPpsatPpiar then
8 = Ppa+PaoatPpus—Pp —Ppas- If P4.s S P/6, then the result holds from Lemma
3. Alternatively, if p, ,>P/6, then p,,,>P/6 and p,,, <(1/3(P-P/3)=2P/9.
Thus, &' -8, =2p,.,—P,.;)<2(2P/9-P/6)=P/9. Hence, the result holds.

From Cases 1, 2, 3, and 4, we have the bound.

Lemma8:If n,26 for ieB, then 5" <5 +P/6.
Proof. If B +j is the last job to complete in batch ie B, then §° <P/(j+1)

(Lemma 3). When i=1, a schedule by BC is the same as that by H2. Hence, the result
holds. [

From the five lemmas above, an upper bound of &/ is established in the following

proposition.

Proposition5: For ieB, 8" <8,+P/6.
Proof. Lemma 4 establishes an upper bound of &) for the case where n, <4 for

i€B Lemmas 5, 6, and 7 establish the bound for the case where n, =5 for ieB.

Finally, Lemma 8 establishes the bound for the case where n,>6 for ieB. [

The following lemma establishes an upper bound of Z:’: O

Lemma 9 : For Heuristic H2, Y., 812 <(s}+3." 84)/2.
Proof. By the construction of H2, & <48} <---<68}. Observe that &%= &/,

8% =68 -8, 8% =061 -6y +6, 6 = 5L -6 +6- -6, and so on. In order to cal-
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b . . . .
culate Zi= . 5iH 2 we consider two cases. First, if b is an even number, then

b
Zé‘iHZ =5ZL+54L +...+§bL S(51L+53L +"'+5bL-1)+6bL'

i=1

On the other hand, if b is an odd number, then

b
361 = S+ 6E 4ok OE < (B + 8L 4+ BE)+ L

i=1
Therefore, 2;5,-“2 <(8} +Zf=1 5h)/2. O

The next lemma establishes a lower bound for Z:; . S .

' 52,

Lemma 10 : For problem P2IP,=P13C,, 2;5; > Z,-=1 ,
Proof. Suppose in o*, batches complete in their index order. Let Pf be the sum of
the processing times of jobs in batch i on machine k in o* for ieB and
ke{l, 2}. Observe that | P, -P>6, for i=1, 2, -, b. Otherwise, C" can not be
an optimal makespan for jobs in batch i. Also, note that for i=2,3,---, b,
5 ,+6 2P ~Pil,and & =IP/-Pi .

Then,

b
2)' 5 22(5) +8, +++68,1)+6,

i=1

>

\%

%)

b . )
DIp-Pl
i=1
>
i=1 g
b oo b =
Therefore, 20, 230,/ 2_ =
From (1) and (2),

— b *

0.

oo 2 BOYDP 2.8
4 2

and

— b
gz _ bO+DP 28"
2 2




CUSTOMER ORDER SCHEDULING PROBLEM ON PARALLEL MACHINES WITH IDENTICAL ORDER SIZE 63

Hence, we have

b b
o )
ZHZ—z*=Z'=1 T iz i 5)
2 2

Now, we prove the worst case bound of H2.

Theorem 4 : For problem P21P, =PI1XC,, z"*/z* <1+(b+6)/{6(b> +b)} .

Proof. From Lemma 10, Z; 5 > Z:;l 51 /2. Also, from Lemma 9 and Proposition 5,

4 H2 5bL+Zf=15iL
>0

2
>.(5+P/6)
+ -

IA

‘Nl'm N | 3l
+

IA

<

=g

+

N

=l
™M
1

IA

From Lemma 10 and (5),

< ) (6)

If we diviyde both side of the inequality (6) by z*, whichis >{b(b+1)P}/4, then

bP+6P
z 24 _
z* b(b+1)P
4
b+6
6b(b+1)

=1+

This proves the result. [
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Even though the bound is not tight, it can be seen that it is fairly strong com-
pared to the bound of BC. For example, for b =3, the bound is 1.125 < 7/6 and for
b=10, the bound is ~1.0242. Also, the bound convergestolas b goesto oo.

The following remark shows that H2 and BC do not dominate each other.

Remark 2 : For problem P2|P. =P] X.Cy, , Heuristics H2 and BC do not dominate each
other. ‘
Proof. We first present an example where BC performs better than H2. Consider the
instance where b=3, n =n,=n,=2, p,=p;=6, p,=p,=4, p;=7,and p,=3.
Since C; =C; =6<Ct =7, o™ =(c/, oi?) where o/*=(1, 6,3) and o0,”=(2, 5, 4).
The solution value is z"?>=6+10+17=33 . However, o’ =(c/°, 6;°) where
0, =(1, 4,5) and o€ =(2, 3, 6). The solution valueis z*“ =6+11+15=32.

Next, we present an example where H2 performs better than BC. Consider the
instance where b=2, n, =1, n,=2, p,=2, and p,=p,=1. Since C; =2>C;,
o™ =((2, 1), (3)) and the solution value is z"* =1+3 =4. However, ¢* =((1, 2), (3))

and the solution valueis z*¢ =2+3=5. [

5. More Than Two Parallel Machines

In this section, H2 is extended and applied to problem with more than two parallel
machines. Recall from Theorem 2 that the recognition version of problem P3|

P=PIXC g is unary NP-complete.

5.1 Problem P!P = 13|ZCBi

We first extend H2 for problem PIP. =PIYC s and establish a worst case bound of

the heuristic. We call this heuristic H. For the completeness, we formally describe the

heuristic.

Heuristic H
0.For i=1, 2, ---, b, reindex the jobs so that p, >p,,, if j, j+1€B,.
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For v=1,2,-,b,set F,=F, =--=F_=0.

Set i=j=v=1 and F=F=---=F,=0.

1. Assign job J inbatch V' to the first available machine k = argmin{F,,, F,,} .
Set F, =F,;v+p]. and j=j+1.
Repeat Step 1 until all jobs in batch v are scheduled.
2.If v<b,thenset v=v+1 and goto Step 1.
3. Reindex batches so that max, ., (F, ,} <max, ,{F, ,}<---<max, ,,{F ,}.
4. Reindex machines so that F, <F, <---<F, .
Also, reindex F, for (=1,2,---, m sothat F,>F, >--->F,..
Set [,=F,+F, for {=1,2, ., m.

5.5et C, =max, ,{F}.

6.If i<b, then goto Step4.
Otherwise, output ZLC:‘ and stop.

In Step 0, reindexing the jobs in each batch i=1, 2, ---, b requires O(Zf: i logn,)
time. In Step 3, reindexing batches and finding maximum makespan for each batch
require O(blogb+mb) time. In Step 4, reindexing machines for each batch requires
O(bmlogm) . Since all other operations require O(n) time, the time requirement of H
is O(nlogn +bmlogm).

As described, the LPT rule is applied for each batch to group jobs to m parti-
tions. The LPT makespan for each batch also determines the order of batches in the
final schedule so that a batch with the smallest makespan is processed first and so on.
Then, each partition is assigned to a specific machine so that a partition with the larg-
est processing time is assigned to a machine with the smallest completion time. The
heuristic repeats this step until no partition is left for scheduling.

In order to establish the bound, we define some new notation. The notation is an
extended version of the notation introduced for P21P, =P I2C, in the previous
section.

Suppose that in o, batches complete in their index order. Let P} be sum of

processing time of batch ¢/ on machine k for {€B and keM in o.For ieB,

suppose that batch i is the last batch to complete in o. Then, after batch i is
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scheduled, the total processing time on machine k is z;: . ij for ke M. For nota-

. . . . i i i
tional convenience, reindex machines so that ZH P! ZZH P> .2 ZH P" . Let

i

8,(0)= L P} -3 P 7)
A
where k=1, 2, ---, m~1. Notice that (7) is an extension of &, in the previous section
to the case where m >3.From (7), 6,(0)26,(c)2 - 6, (o) foreach ieB.Weuse
8,(0) for k=1,2,---, m-1 to provide a description of the completion time of batch i .
If Gc B isthe set of batches that complete no later than batch i, then

Ci(O') _ Zeecpl’ +§k=l é‘ki(o-). (8)

Observe that since P, = P for £=1,2, -1, C;(o) depends only on the size
of 6,(o) for k=1, 2, ---, m—1. Also, observe that (8) is a direct extension of (1). For

notational convenience, let o be the schedule found by Heuristic H and z" be

total completion time of this schedule. Also, let & =5,(c") for ieB.

The following lemma establishes an upper bound of 3}/ .

Lemma 11 : For problem P|P,=P1XC,, & <P for ieB.
Proof. By the construction of H and from the definition of &,,, the result holds. [

Now, we prove the worst case bound for H.

Theorem 5 : For problem PI|P, = 13|ZCB,» 27 [2* <1+2(m-1)/(b+1) where m is the

number of machines.
Proof. From (8) and Lemma 11,

— b m-1
o BeDP2+ 3 Sy
- m
. Bb+1)P/2+(m-1)bP
m

©)
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Also, from (8),
g5 H0+DP/2 (10)
m
From (9) and (10),
2" - b(b+1)P/2+(m—1)bP
z* b(b+1)P/2
<14 2m=h) (11)
b+1

Note that with fixed m, the worst case bound (11) goes to 1 as the number of

batches goes to . In the next section, we tighten the bound for the three parallel

machine case.

5.2 Problem P3IP,=PIXC,

We now apply H to problem P3I1P, =PIZC s and establish the worst case bound of
the heuristic. The worst case bound of 1+2/b is tighter than (11) which is
1+2(m-1)/(b+1) =1+4/(b+1).

For notational convenience, we call this heuristic H3. Let o™ be the schedule
found by Heuristic H3 and z"° be total completion time of this schedule. Also, let
8 =6,(c"™) for ieB. Throughout this section, we assume that in ¢"°, batches

complete in their index orderand p; 2p,,, if j, j+1€B,.

The following lemma establishes an upper bound of &,° +3}7°.

Lemma 12 : For problem P3P, =P1XC,, &> +5,° <2P for ieB.

Proof. From the definition of &8,; and Lemma 11, the result holds. [J

Suppose that batch j is processed later than batch i in a schedule for i, je B. We
say &, for kefl, 2, 3} is covered by jobs v,, v, ,---, v, in batch j for len, if
Pu, + Py, + = + p, 26, . For notational convenience, let P° be sum of processing

times of jobs in batch i on machine k in o™ for ke M. Then, the next two re-
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sults establish an important property of completion times in &"* for two consecu-

tively processed batches.

Lemma 13 : For problem P3|P,=P|XC s » Suppose that batches i and j are processed
consecutively in o™ and PF2P°2P° for {k, k,, k,}eM and i,jeB . Then,
C,(c1?)> C(c™).

Proof. We assume without loss of generality that batches are ordered in their index
orderin o’. Suppose j=2 and P 2Pf 2P} for {k;, k,, k;}e M. Since C} <Cj,
5y’ < max{P}<B. Hence, C,(c;°)>Cy(c™).

Now, suppose that j=3 and P 2P >P* for {¢, ¢,, £{;}e M. Note that
since C; <C;, P <Pj. Since 85’ > and PS 2P 2P}, &8 <P/ implies
that C,(0;°)2C,(c™). To show §&;° <P', we consider three cases according to
the machine where batch j completes.

First, suppose that C,(¢"*)=C,(0;°). Then, &;° <P <P;*. Hence, the result
holds. Second, suppose that C,(c""*) =C,(0}°). Since C,(0y°)2C,(c™), 85’ <P
<P . Hence, the result holds. Finally, suppose that C,(c"’)=C,(c,’). Since
Cy(0,°)2Ci(c™), 83’ =6, -P +P®. Hence, 8’ <d,><P*, and the result
holds.

Then, we can repeat this argument for j=4, 5, .-, b. [

Lemma 14 : For problem P3P, =PI 2.Cy , suppose that batches i, j, and k are proc-
essed consecutively in o'* for i, j, ke B. Then, 8)° +68;° +6,° +6,° +8) +6; <3P.

Proof. We consider four different cases according to different combinations of com-

pletion times of any two consecutively processed batches.

Casel: C, <min,{C,(c,°)} and C, <min_,,{C.(c/)}.
Since C; <min, ., {C,(o;°)}, &°+6, <P. Also, &/ and &, are covered by
jobs in batch k, and the portion of batch k, which does not cover &/° and &, is

greater than orequal to &,;°. Hence, &°+6,° +6);° <P.From Lemmall, &;’<P.
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Therefore, the result holds.

Case2: C; <min,,{C;(6;”°)} and C,>min,_,{C,(c/)}.

Note that &° and &, are covered by jobs in batch j, and the portion of
batch j, which does not cover &, and &,;°,, is greater than or equal to 5/1>. Hence,
6P +8P+8 <P,

If batch k completes on the machine where job S, +1 is processed, then
C, <min,_, {C,(c®)} due to Lemma 13. Contradiction. Hence, batch k completes

on the machine where either job S, or B, +2 is processed. Without loss of general-
ity, we assume that jobs S, and p, +2 are processed on machines 1 and 3, respec-
tively.

Suppose batch k completes on the machine where job f, is processed. By the

construction of H3, jobs in batch k on machine 1 covers 5173, and the portion of
those jobs in batch k on machine 1, which does not cover &/, is equal to 3.
Hence, 6, +6, <6/’ +5> <P. From Lemma 11, §,;> <P. Hence, the result holds.

Alternatively, suppose that batch k completes on the machine where job g, +2

is processed. By the construction of H3 and from Lemma 13, §/°+6;° <P} +P}.
Hence, &, +8, <&, +0; <P. From Lemma 11, &/° <P. Therefore, the result

holds.

Case3: C;>min,,{C,(c;°)} and C, <min,,{C,(c/)}.

Note that &> and &,;° are covered by jobs in batch k, and the portion of
batch k, which does not cover &,;° and &,7, is greater than or equal to &,;°. Hence,
8 +8 +8 <P .

If batch j completes on the machine where job S, +1 is processed, then
C, <min,_, {C,(5/")} due to Lemma 13. Contradiction. Hence, batch j completes
~ on the machine where either job g, or g, +2 is processed. Without loss of general-

ity, we assume that jobs S, and p,+2 are processed on machines 1 and 3, respec-
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tively.

Zuppose batch j completes on the machine where job g, is processed. Then,
8" is completely covered by jobs in batch j on machine 1, and 6, is partially
covered by remaining jobs in batchj . Uncovered portion of &,° is covered by jobs
in batch k, and the uncovered portion of &y’ is smaller than or equal to &;°. Since
80 +68,7 +6° <P, 87 +6; <P. Hence, the result holds. A similar proof can be
used for the case where batch j completes on the machine where job B, +2 is

processed.

Case4: C,>min,,{C(c;°)} and C;>min,,{C,(c7°)}.

Note that batch k completes on the machine where either job g, or g, +2 is
processed. Similarly, batch j completes on the machine where either job g; or
B;+2 is processed. Without loss of generality, we assume that jobs B, and S +2
are processed on machines 1 and 3, respectively. Also, we assume that jobs £, and
p.+2 are processed on machines k, and k, for k;, k, {1, 2, 3} and k #k;,
respectively.

First, 5)° is completely covered by jobs in batch j on machine 1. If batch j
completes on the machine where job g, is processed, then remaining portion of
those jobs in batch j on machine 1, which does not cover &,°, is equal to &,;". Al-
ternatively, if batch j completes on the machine where job f;+2 is processed,
then jobs in batch j on machine 3 is greater than or equal to &,;’. The remaining
jobs of batch j partially covers &,;°, and uncovered portion of &, is completely
covered by jobs in batch k on machine k.

If batch k completes on the machine where job g, is processed, then the remain-
ing portion of those jobs in batch k on machine k,, which does not cover &, is
greater than or equal to J);°. Also, jobs in batch k on machine k, can completely
cover &°, and the remaining portion of those jobs in batch k on machine k,
which does not cover 6/°, is equal to &,;°.

Alternatively, if batch k completes on the machine where job g, +2 is proc-
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essed, then jobs in batch k on machine k, and the remaining portion of those jobs
in batch k on machine k,, which does not cover J;°, are greater than or equal to

8y - Also, jobs in batch k on machine k, can completely cover 6/° from Lemma

13, and jobs in batch k on machine k, is greater than or equal to &;.°.
To cover all §'s, we use batch j once and batch k twice. Hence, the result

holds. From Cases 1, 2, 3, and 4, we have the result. O

The next theorem establishes the worst case bound of H3.

Theorem 6 : For problem P3|P,=PI1XC,, 2" /z*<1+2/b.

Proof. We first establish an upper bound of z"*. We consider the following three
cases of b. First, suppose that b is a multiple of three such that b=3¢ where
£=1,2, -, b/3.From Lemma 14 and (8),

_bO+DP/2+ 3 5
3
< b(b+1)P/2+3¢P
3
. bp+1)P/2+bP
3

ZH3

(12)

Second, suppose that b=3/+1 where (=1, 2, ---, | b/3 . From Lemmas 12 and 14,
and (8),

ZH3<b(b+1)F/2+3z1‘3+213
N 3
Hb+)P/2+(b+1)P
< 3 :

(13)

Finally, suppose that b=3/+2 where ¢£=1, 2, -+, | b/3]. From Lemma 14 and (8),

S0 b(b+1)P/2+3¢P+3P
- 3
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. b(b+1)P/2+(b+1)P

14
3 (14)
From (12), (13), and (14),
S < b(b+1)P/2+(b+1)P. (15)
3
Therefore, from (8) and (15),
2 _b+1HP/2+(B+1)P
z* 3
< 1+% . O (16)

Even though bound (16) is not tight, it can be seen that the bound decreases as b
increases. Also, the bound converges to 1 as b goes to «. Also, when m =3, (16) is

always less than or equal to (11).

6. Computational Study

We empirically evaluate BC, H2, and H (including H3) by comparing solution
values generated by heuristics with a lower bound value. A lower bound value can
be calculated by using the linear programming (LP) relaxation of problem
PIP=PIXC 5 - Let z' be the lower bound value. Then,

S s VP
m m m

In the LP relaxation of problem PIP, =P| 2C;, ajob can be split into pieces of

any size and processed, simultaneously if desired, on multiple machines. A lower
bound z" is used instead of an optimal solution value z* because z* is very dif-
ficult to obtain. As performance indicators of BC, H2, and H, we use upper bounds on
relative errors z° /2", z"*/z" and z"/z", respectively.

In this computational study, we compare the performances of BC, H2, and H un-

der various conditions. We also observe the impact of different factors suchas b, m,
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and P onthe performances of BC, H2, and H.

For each problem instance, p; ~DU[p"®, p**] for je N where p** and p*

are parameters and where DUJ[/,u] represents a discrete random variable uniformly

distributed between ¢ and u. We use /=1 and u=99. Since P =P for all

1

batches, the algorithm, which generates problem instances, checks whether accumu-

lated p; for each batch is greater than P while generating p;’s. If the finally
added job makes accumulated p; greater than P, then the last p; is reduced to
make accumulated p; is equal to P.

We generate 1,440 test problems under 48 conditions. To test the effects of vary-
ing the number of batches b, we consider four different values of b : 1, 5, 10, and 50.
To determine whether different P’s have an impact on the performance of the heu-
ristics, we consider three different values of P : 250, 500, 2500. To test the effects of
varying number of machines m, we consider four different values of m: 2,3, 5, and
10. The two machine case is for BC and H2. Heuristic H(including H3) is tested for 3,
5, and 10 machine cases. For each combination of the different factors, we solve 30

problems. Table 1 presents a summary of the design for the computational study.

Table 1. Design for the Computational Study

DU[1, 99]
m=2 m=23 m=5 m=10

b P b P b P b P

1 250 1 250 1 250 1 250
1 500 1 500 1 500 1 500
1 2500 1 2500 1 2500 1 2500
5 250 5 250 5 250 5 250
5 500 5 500 5 500 5 500
5 2500 5 2500 5 2500 5 2500
10 250 10 250 10 250 10 250
10 500 10 500 10 500 10 500
10 2500 10 2500 10 2500 10 2500
50 250 50 250 50 250 50 250
50 500 50 500 50 500 50 500
50 2500 50 2500 50 2500 50 2500
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We now summarize the results of our study, and they are presented in Table 2.
The average relative error is the average of the ratios of the solution value of a heuris-
ticto z". The average relative error is calculated over the 30 replications of each test
problem. Overall, the results suggest that all the heuristics perform well except for
the cases where both b and P are small and m is large. Note that when b=1,
problem P|C,, reduces to PIP = ﬁIZCBi , and from Remark 1, z"/z*<

(4m-1)/(3m)=1.3. However, z"/z* >3, P=250 and m=10. Remember that in

LP relaxation problem, a job can be split into pieces of any size and can be processed
simultaneously. Hence, as m increases, the gap between z' and z* increases.
Hence, we strongly suspect that a large values of relative errors are due to using z"

instead of z*.

Table 2. Performance of the Heuristics

p; ~ DU[1,99] m=2 m=3 m=4 s
b P BC H2 H(H3) H H
250 1.04187 1.04187 1.10320 1.10320 1.10320
1 500 1.01107 1.01107 1.03100 1.07300 1.76667
2500 1.00077 1.00077 1.00200 1.00487 1.02040
250 1.01801 1.01150 1.02043 1.1339% 1.49707
5 500 1.00438 1.00307 1.00756 1.01980 1.16240
2500 1.00021 1.00014 1.00041 1.00122 1.00444
250 1.00940 1.00553 1.01146 1.06824 1.25726
10 500 1.00246 1.00146 1.00380 1.01070 1.08592
2500 1.00011 1.00007 1.00020 1.00054 1.00225
250 1.00208 1.00108 1.00230 1.01472 1.05430
50 500 1.00054 1.00029 1.00081 1.00215 1.01764
2500 1.00002 1.00001 1.00004 1.00012 1.00045

Even though H2 and BC do not dominate each other in theory (Remark 2), the
results corresponding to the case where m=2 indicates that H2 consistently per-
forms better than BC for all combinations of cases. Furthermore, the detailed results

show that for all 420 problem instances where m =2, H2 performs no worse than BC.
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While there may be errors due to the use of z" instead of the optimal value, as
P increases, performance of all the heuristics seems to improve. The same thing
happens as b increases. Finally, for H, the larger the number of machines, the big-

ger the average error bound.

7. Discussion and Further Research

We have explored problem PIP, =13|ZCB,.- Even though condition P, =P
seems restrictive, the problem is more complicated than P!IC_ from a research

perspective and has a practical application. Simple reductions show that P2|P,
=PIXC, is at least binary NP-complete and P3IP. =P 12C; is unary NP-

complete. For the two parallel machine case, we find a tight worst case bound for a
known heuristic BC. Also, for a new heuristic H2, we establish a strong worst case
bound which goes to 1 as the number of batches goes to infinity. In theory, neither
heuristic is superior for all instances, but the computational study suggests that H2
may perform better than BC for practical problems. Heuristic H2 is extended to an
arbitrary number of parallel machine case. For a fixed number of machines, we find a
worst case bound which goes to 1 as the number of batches goes to infinity. Finally,
we tighten the bound for the three parallel machine case.

There are several extensions of our research that might be considered. We can
study different machine speeds such as proportional and unrelated parallel machines.
Also, different shop environments can be considered, such as job shop, open shop,
and flow shop. These different shop environments have a variety of realistic applica-

tions. Finally, it still has to be determined whether P2IP =P I2.C, is binary or
unary NP-Complete. We also leave this to future research.
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