• Title/Summary/Keyword: Cushion Chamber

Search Result 16, Processing Time 0.025 seconds

Simulation Study on Dynamic Analysis of Spring Type Needle Valve to Absorb Surge Pressure in Pneumatic Cushion Cylinder (공압 쿠션 실린더의 충격압 흡수를 위한 스프링형 니들밸브의 동특성에 관한 연구)

  • Lee J.G.;Xiaofei Qin;Lee J.;Lee J.C.;Shin H.M.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • The purpose of this study is to find the effective dynamic characteristics of an improved pneumatic cushion cylinder with a spring type needle valve. The dynamic model represented the peak pressure control method when the pneumatic cushion cylinder is moving forward or backward in the horizontal direction. It was found from the simulation results that the peak pressure in the cushion chamber is affected by the spring, which helps to understand the performance of the pneumatic cushion cylinder and to improve or design a better cushion needle valve component. From the simulation results, the stability of pneumatic cushion cylinder with a spring type needle valve was superior and its cushion capability was also better than that without the spring.

  • PDF

A Study on the Meter-Out and Meter-In Speed Control Characteristics in Pneumatic Cushion Cylinders (공기압 쿠션 실린더의 미터아웃/미터인 속도제어 특성에 관한 연구)

  • Kim, Do-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Pneumatic cylinders are widely used to actuators in automatic equipments because they are relatively inexpensive, simple to install and maintain, offer robust design and operation, are available in a wide range of standard sizes and design alternatives. This paper presents a comparative study among the dynamic characteristics of meter-out and meter-in speed control of pneumatic cushion cylinders with a relief valve type cushion mechanism. Because of the nonlinear differential equations and a requirement for simultaneous iterative solution in a mathematical model of a double acting pneumatic cushion cylinder, a computer simulation is carried out to investigate pressure, temperature, mass flow rate in cushion chamber and displacement and velocity time histories of piston under various operating conditions. It is found that the piston velocity and pressure response in meter-in speed control are more oscillatory than with meter-out those when pneumatic cushion cylinders are driven at a high-speed. In meter-out speed control, the effective area of the flow control valve is larger than that of meter-in, and the supply pressure has to be much higher than the pressure required to move the load because it has also to overcome the back pressure in cushion chamber.

Effect of Orifices in Cushion Sleeve on Cushion Characteristic of Pneumatic Cylinder (쿠션슬리브의 오리피스가 공압실린더의 쿠션특성에 미치는 영향)

  • 박재범;염만오
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.76-80
    • /
    • 2004
  • Cushion sleeves are used in pneumatic cylinders to avoid impact force arising at the end stroke part between moving piston and cylinder cover. In this study low kinds of cushion sleeves are designed, manufactured and attached to the pneumatic cylinder to be experimented. The effects of cushion sleeves on cushion characteristics are investigated. e results are as follows; the pressure variation of cushion room with orifices are inspected to be smaller than that of cushion room without orifices. So sleeves with orifices are expected as protecting from impact and vibration of pneumatic cylinder. The object of this study is to provide data on the charactristics of pneumatic cushion sleeve in case of being used in industry.

Characteristic Comparison on Internal Cushion Devices at High-speed Pneumatic Cylinders (고속 공기압 실린더 내장용 쿠션기구의 특성 비교)

  • Kim, Dotae;Zhang, Zhong Jie
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.24-30
    • /
    • 2013
  • This paper studies the comparative analysis on two different internal cushion devices (the types of needle and relief valve) used to absorb the energy which is generated when the pneumatic cylinder moves with the load at meter-out speed control system. The effect at varying the piston velocity under same driving condition is mainly investigated. The simulation results on pressure in the cushion chamber and the dynamic behavior of the relief valve type cushion device are compared with the needle valve type. Design and performance are improved with the cushion configuration of better quality at high-speed pneumatic cylinder. Based on the relation between absorbed energy and impact energy at cushion process, cushion performance at pneumatic cylinder is evaluated.

Analysis of Cushion Mechanism with Relief Valve for High-Speed Pneumatic Cylinders (고속 공기압 실린더용 릴리프밸브형 쿠션기구의 특성 해석)

  • Kim, Do-Tae;Zhang, Zhong Jie
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.95-103
    • /
    • 2010
  • This paper presents a simulation model of a double-acting high-speed pneumatic cylinder with a relief valve type cushion mechanism. The model predicts piston motion, mass flow rate, pressure and temperature time histories of cushion chamber. Of interest here is to investigate the cushioning effect of varying the piston and piston-rod diameter, cushion ring diameter and length, and stoke in cushion mechanism. As a result, this cushion mechanism is found to be adequate under high-speed driving of pneumatic cylinders. The simulation model proposed here will be very useful to analyze the dynamic characteristics and to improve or design the better cushion mechanism in high-speed pneumatic cushion cylinders.

Cushion Characterics at Cushioning Zones of Pneumatic Cushion Cylinder by Orifice Existence of Cushion Sleeve (공압 쿠션실린더에서 쿠션슬리브의 오피리스 유.무에 따른 쿠션영 역에서 쿠션특성)

  • 박재범;염만오;장성철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.435-439
    • /
    • 2002
  • In the pneumatic system, pneumatic cylinder is wildly used to factory automation. In general, Pneumatic cylinder problems are occured with colliding to stroke end part at which piston collide to end-cap, head cap and tube when piston is loading. This appearances have a short life of cylinder and is due to system destruction. This study examines the dynamic characteristics of pneumatic cushioning cylinder and cushion sleeve design. At head part cushion chamber for the vertical experimental, The decisions of cushioning effect and the results of the experimental research are obtained to the followings: i) The cushioning effects could acqure to the reserch, if the compressible energy is more than kinetic ones. ii) The collision of piston and head cover could acqure to the research, if the kinetic energy is more than compressible iii) If the load increase to the rolling car, the cushion region pressures would increase and the dynamic force.

  • PDF

Study on the Damping Mechanism of an Hydraulic Type Automotive Seat Damper (자동차용 유압식 시트댐퍼의 댐핑 메카니즘에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.1-6
    • /
    • 2016
  • Typically, the seat of an automotive vehicle generally includes a horizontal seat-cushion portion and a vertical seat-back portion that is operatively connected to the seat-cushion portion. The seat may include a recliner for the reclining of the seat-back portion relative to the seat-cushion portion by the seat occupant. An energy absorber or damper can also be provided for the seat-back portion. Because the recliner is configured to be released at a relatively high speed, and it results in an impact at the end of a folding stroke, the damper needs to dissipate energy as the seat back moves with respect to the seat cushion; therefore, the role of the seat damper in the automotive-seat design is important. In this paper, the mechanism of an hydraulic-type automotive-seat damper is investigated, and the torque characteristic is simulated according to the design-parameter variations such as the orifice area and the working-fluid properties.

Driving Characteristics of Pneumatic Cylinder with Relief Valve Cushion Devices (릴리프밸브 쿠션기구 내장형 공기압 실린더의 구동 특성)

  • Kim, Do Tae
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.7-13
    • /
    • 2016
  • This paper presents the meter-out and meter-in speed control characteristics of a pneumatic cylinder with relief valve type cushion device. The piston displacement and velocity are measured to investigate high speed driving performance with variation of the pressure setting in relief valve, air supply pressure, load mass, the supply and exhaust flow rate from the cylinder. Also, the internal pressures and temperatures driving pressure and cushion chamber are measured. The piston displacements and velocities of meter-out and meter-in control are compared experimentally determined data. A comparison experimental data meter-out and meter-in control show that a relief valve type cushion device is suitable for high speed pneumatic cylinders. The desired response characteristics of piston displacement and velocity are satisfactory adjust the pressure setting of a relief valve with varying system parameters such as air supply pressure, load mass and controlled flow rate.

A Deformation Model of a Bag-Finger Skirt and the Motion Response of an ACV in Waves

  • Lee, Gyeong-Joong;Rhee, Key-Pyo
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.2 no.1
    • /
    • pp.29-46
    • /
    • 1994
  • In this paper, the effect of a skirt deformation on the responses of an Air Cushion Vehicle in waves is investigated. The air in the bag and plenum chamber is assumed to be compressible and to have a uniform pressure distribution in each volume. The free surface deformation is determined in the framework of a linear potential theory by replacing the cushion pressure with the pressure patch which is oscillating and translating uniformly. And the bag-finger skirt assumed to be deformed due to the pressure disturbance while its surface area remained constant. The restoring force and moment due to the deformation of bag-finger skirt from equilibrium shape is incorporated with the equations of heave and pitch motions. The numerical results of motion responses due to various ratios of the bag and cushion pressure or bag-to-finger depth ratios are shown.

  • PDF

A Study on the Floating OWC Chamber Motion in Waves (부유기 OWC 챔버의 파중 운동해석)

  • 홍도천
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.19-27
    • /
    • 2002
  • The motion of a floating OWC chamber in waves is studied taking account of fluctuating air pressure in the air chamber. An atmospheric pressure drop occurs across the upper opening of the chamber which causes not only hydrodynamic but also pneumatic added mass and damping forces to the floating chamber. A velocity potential in the water due to the free surface oscillating pressure patch is added to the conventional radiation-diffraction potential problem. the potential problem inside the chamber is formulated by making use of the Green integral equation associated with the Rankine Green function wile the outer problem with the Kelvin Green function. The two integral equations are solved simultaneously by making use of a matching boundary condition at the lower opening of the chamber to the outer water region. The chamber motion in the frequency domain is calculated for various values of parameters related to the atmospheric pressure drop. The present methods can also be sued for the analysis of air-cushion vehicle motion as well as for the design of a floating OWC wave energy absorber.