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Abstract

In this paper, the effect of a skirt deformation on the responses of an Air Cushion
Vehicle in waves is investigated. The air in the bag and plenum chamber is assumed
to be compressible and to have a uniform pressure distribution in each volume. The
free surface deformation is determined in the framework of a linear potential theory by
replacing the cushion pressure with the pressure patch which is oscillating and trans-
lating uniformly. And the bag-finger skirt assumed to be deformed due to the pressure
disturbance while its surface area remained constant. The restoring force and moment
due to the deformation of bag-finger skirt from equilibrium shape is incorporated with
the equations of heave and pitch motions. The numerical results of motion responses
due to various ratios of the bag and cushion pressure or bag-to-finger depth ratios are
shown.

1. INTRODUCTION

Since the first Air Cushion Vehicle applying the idea of Christopher Cockerell, the SR.N1,
was launched in England at 1959, many ACV’s have been built and used to various applica-
tions because they have many advantages such as high speed and amphibiousness etc.. And
theoretical and experimental works to analyze a craft ride quality have been performed by
many researchers throughout the world. But theoretical models for computing the response
of hovercraft have not 'yet been developed sufficiently to use as a design tool owing to the
absence of adequate experimental data on some of the mechanism present[1-3].

The analysis of responses of an ACV over regular waves was started by Reynolds [4]. He de-
veloped a linearized equation of motion by considering a single-plenum craft with single-degree
of freedom in heave. A quadratic expression for the fan characteristics, the incompressible
Bernoulli equation and the usual equations of continuity were used in this analysis. Later
Reynolds et al.[5] extended this work to include pitch motion in addition to heave by adopting
a craft with a transverse skirt. The pressure deviations of the fore and aft compartment from
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their equilibrium values were used to formulate a pitch equation of motion. The important
assumptions included in both papers were that the skirt hemline makes no contact with the
water surface and the wavy surface is rigid.

The effect of the presence of the water surface upon the perturbations of pressure in the
plenum in a surface effect ship was examined by Breslin[6], Kim and Tsakonas[7], and in an
ACV by Doctors[8,9]. Breslin assumed that the deformation of the water surface participates
in the generation of the bubble pressure in conjunction with the actions of seals, fans, etc., and
the deformation of the water surface under the oscillatory rectangular pressure patch, having
an infinite beam, in uniform translation be used to display the way in which the motion of the
water surface participates in the determination of the pressure variations in the plenum air.
His work was later extended to three dimensions by Kim and Tsakonas. They evaluated wave
elevation, escape area at the stern and volume induced by an oscillatory rectangular patch
in uniform translation for the entire range of the speed frequency parameter 7 of practical
interest, from very low to considerably high. Earlier than the Kim and Tsakonas, Doctors
had developed the same analysis to evaluate the hydrodynamic influence, and he applied this
result to the motion of Air Cushion Vehicle which was taken by Reynolds. The hydrodynamic
influence was felt through the alteration of the air gap under the skirt due to water deflection
and a change in the effective flux balance of air in the cushion, which was assumed to be
incompressible. Also he evaluated the non-linear effect on the motion responses of the craft
for different wave heights. He extended his previous work to higher Froude numbers and
encounter frequencies of practical interest[10], and to include the effect of compressibility
of the air by considering only the accumulation term in the continuity equations for the
chambers.

Rhee and Lee[10] made a similar analysis to evaluate the responses of an ACV in uniform
translation over regular waves, in which the effects of the height and inclination of the skirt
on the motion responses were examined. They evaluated the hydrodynamic influence due to
cushion pressure in line with Doctors[9], but developed a numerical approach that is valid
for the entire range of the parameter 7 and for a polygonal pressure patch by use of Stoke’s
theorem. In the dynamic analysis of the air flow in chamber and duct, the adiabatic and
isentropic flow law was applied directly to the equations of the mass conservation.

The object of this paper is to present a method for analyzing the skirt deformation due
to pressure changes and surface elevations, using this method, the heave and pitch responses
of an ACV with bag and finger skirt in uniform translation over regular waves are evaluated.
A model for the deformation of the bag-finger skirt is proposed. The hydrodynamic influence
and the air flow are formulated in line with Rhee and Lee[10], but the skirt deformation and
its effects on the air flow and skirt forces are included.

The heave and pitch responses of an ACV with bag-finger skirt to regular waves are
calculated for different ratios of the bag and cushion pressure and for different shapes of
bag-finger skirt by use of linear equations of motion. The shape of bag-finger skirt has an
important effect on the motion responses at somewhat high frequencies.

2. MODEL OF SKIRT DEFORMATION

A bag and finger type skirt, which was shown in Figure 1, is considered for this research.
The skirt deformation is assumed to depend on the restoring coefficient, the pressure in the
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Figure 1: Schematic view of a bag-finger skirt

bag and the plenum chamber, and on the free surface elevation. The analysis of the restoring
force of the bag for a simplied model is given in Appendix.

In this section, the skirt deformations due to the pressures and the free surface elevation
are examined.

2.1 Deformation due to the Pressure in the Bag

When the pressure P, in the bag increases, the bag is going to move downward. The
pressure is understood as a gage pressure hereafter. Suppose the pressure P, increases by an
amount of AP, and the bag deforms by an amount of the angular displacement Ay. The
upward force acting on the bag is

~bAP,,

where b is the lateral distance of two points to which the bag is attached. And the force on
the finger is
—P.l, cos(vp + AY) + P.lgcos Y = Pl sin p Ay,

where P, is the pressure in the plenum chamber, and [, the length of finger. The restoring
force of the bag is as follows.
PydAy,

where d is the distance of two points to which the bag is attached as in Fig.1.
From the equilibrium condition of forces, we can obtain the angular deformation Ay as
follows,

—bAP,

Ay = Pyd— Pl sing’ (1)

Since the force acting on the bag and its counterpart on the structure cancel each other,
the force acting on the skirt system due to the pressure increase, AP;, becomes

PdAY + AP, = b (% - 1) AP, (2)
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where D is defined as,

Pl siny

“Rd ®)
From the angular displacement At we obtain the vertical displacement of the lowest point

of the finger,

D=1-

wb
wAY = —PT!EAPIH (4)
and the horizontal displacement of the point,
hb
hAy = ——WAP;,. (5)

where w is the lateral distance from the edge of plenum chamber to the lowest point of finger,
and A is the height of the ceil in the plenum chamber.

2.2 Deformation due to the Pressure in the Plenum Chamber

As the pressure in the plenum chamber P, increases, the bag will deform in the upward
direction. Suppose the pressure P, increases by an amount of AP, and the bag deforms by
A, The upward force acting on the bag is

AP, (w+ lscosv),
and the force on the finger is
—AP,.l,cosy + Plssin Ay,
And the restoring force of the bag is as follows,
PydAy.

Similarly, we can obtain the angular displacement A as follows,

w

AY =

v P,dD

Among the forces acting on the bag, wA P, will be included in the force on the pressurized

support area, so we omit the term wAPF, here. Therefore the upward force acting on the skirt

system due to the pressure increase AP, in the plenum chamber can be represented as follows,
1

PdAY — wAP. = w (5 - 1) AP.. (7)

The vertical displacement of the lowest point of the finger is

AP,. (6)

w?

Ay =——=AP,, 8
WAV =pib ®)
and the horizontal displacement of the point,
hw
hAY = AP, 9
v PdD )

(Positive sign means the outward direction.)
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2.3 Deformation due to the Free Surface Elevation

As the surface below the skirt system moves upward, the finger touches the surface and the
downward force acting on the finger decreases. In consequence, the bag experiences upward
force and the bag deforms upward and lift up the finger. If the skirt system does not move,
the upward force on the skirt due to the surface elevation can be represented as

h

cm) (10)

where h,, is the elevation of the surface. Suppose the bag deforms by an amount of angular
deformation Av, the restoring force of the bag is

PydAy.

Furthermore when the lower part of the finger Al touches the surface, the upward force acting
on the finger is as follows,
P.(lssin Ay + cos P Al).

We know that Al and Ay have the following relation by inspecting the skirt geometry.
1

Al = ——(hy, — wAY), 11
g (e — W) (1)
where Al must be positive. Thus Ay must satisfy the following condition,
Ry
P < —. 1
Ay < = (12)

From the equilibrium condition of forces, we can obtain A as follows,

b

Ap = Teiary . (13
Pyd— P, sing + Poi

In order to satisfy the condition (12), the following condition must be satisfied,
Pyd — P, sint > 0.
Above condition may be rewritten as

Pl siny
~2es2 Y s, 1
P 2° (14)

D=1

If the above condition is not satisfied, there is no way to satisfy the equilibrium condition

of forces, so the bag continues to undergo a deformation. However, this will not happen in

real situation, this just means that the skirt is in its unstable equilibrium state. When D

equals to unity, the deformation of skirt due to the surface elevation will be small. And when

D equals to zero, the skirt deforms in the way in which the lowest point of the finger always

remains on the surface. As D becomes smaller, the skirt will deform more easily due to the
surface elevation. One may choose D as the criterion of the skirt responsiveness.
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We may rewrite the angular displacement of the bag due to the surface elevation,

ha

A¢=_£t<’m_¢_.
PdD + P2

Ctany
The upward force acting on the skirt system is

huw Pd
‘tan® PydD + P,

Ctany

PdAy =

P ,
= Pcm[l+D], (15)

where I is defined as follows,

1-D-—
= A
D"’P,,

o

w__1
b dlta.nllJ ) (16)
tan ¢

/

alg

Comparing this with (10), the skirt force is increased by the skirt response-force factor I in
the present model.

3. MATHEMATICAL MODEL

The heave and pitch responses of an Air Cushion Vehicle with a bag-finger skirt travelling at
a speed of advance U in regular waves are examined. The coordinate system and the craft
are shown in Figure 2.

Figure 2: Model of a craft and coordinate system

The origin of coordinate lies at midship and vertically at the top of plenum chamber.

3.1 Air Flows



Gyeong-Joong Lee and Key Pyo Rhee 35

The air pressure and density changes are assumed to have the adiabatic isentropic rela-
tionship, i.e.,

PN

Pc = Pa (1 + "i) y

5 an

where p, and P, are density and pressure of air in atmospheric condition respectively, and p,
and P, are in the plenum chamber, v is the ratio of specific heat and is taken as 1.4.

Under the assumption that the air is compressible, and the pressure is uniform throughout
the volume at any instant in time, the conservation of mass in the plenum chamber may be
written as

d ) .
—(pcvc) = pch + pcVe = pcQi — pcQe, (18)
dt

where V, is the volume of the plenum chamber, @; and Q. the volumetric flow rate entering
into and exiting from the plenum chamber respectively. And the dot above a variable means
a derivative with respect to time. With equation (17), the above equation may be rewritten
as

V. . .
—te P = Qi — Qe — Ve 19
'Y(Pc + Pa) Q Q ( )
In a similar way, the conservation of mass in the bag and duct may be written as
Vi 1+ P./P,\°
—P == | + Qy, 20
P+ Po) " (1 + P,,/Pa> Qit &y (20)

where V; and P, are the volume and pressure in the bag and duct, respectively. @y denotes
the inlet volume flow rate into the bag and duct, and ¢ is a reciprocal of .

The flow rate though the fan Q; and the pressure difference across the fan Py (this is
normally P; in the absence of the secondary duct, hence P; will be the same as P, hereafter)
are assumed to have the relation below.

P; = Cy + CQy + C3Q%, (21)

where C’s are constants given from experiments of the fan characteristics.
The volumetric flow rates are assumed to be governed by the steady orifice flow law, then
Q; and Q. can be represented as follows,

Qi = (1—1—%%—) kAi/2(Py — P.)/pa(1 + P,/ P.)?, (22)
Q. = kAe\2P./pu(1+ P./P.)S. (23)

where £ is an orifice flow discharge coefficient, A; the inlet orifice area into the plenum chamber
and A, the escape area under the skirt.
The rate of change of the plenum chamber is assumed to be

VC - AC{Z - IECG} - chw + Vw + Vsa (24)
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where A, is the pressurized support area, z. the centroid of A., and z and # denote the heave
and pitch displacements. And V,,,, is the volume change due to the free surface deformation
(will be given in the next section), V,, due to incident waves and V, due to skirt deformations.
The escape area under the skirt may be written as

Ae = Aeo + s [(z —z6 — pr - Cw) dl + nsAes, (25)

where A., denotes the escape area at the equilibrium state, (;, and ¢, are the free surface
elevation due to the cushion pressure and the incident waves, respectively and where A,
is the escape area due to the skirt deformation. The integral has to be carried out along
the cushion perimeter. Since the escape area does not change proportionally to the relative
motion responses, 7, is introduced to evaluate the escape area properly.

The deviations of the variables from their equilibrium values are assumed to be small, the
equilibrium values are denoted by placing subscript ‘o’, otherwise deviations henceforth. We
linearize the inlet flow as follows,

Qi = Qz’pcpc + Qépbeu - (26)
where
Pdo 2(I:)bo - Pco) ) 1
ipc — '_——kAi )
Qp Peo Pdo Pco+Pa+2(Pbo"Pco)
Pdo 2(Pbo — Pco) 6 1
i = ——‘kA, + .
Q v Peo Pdo 2(1:)bo + Pa) 2(Pbo - Pco)
And,
2(P, — P,
Q = kA _(”_.i)_
Pd
= ;pcPc + Qgpbe’ (27)
where
2(Pyo — Peo) 1
L= kA, ,
le Pdo 2(Pbo - Pco)
/ 2(F)bo - Pco) 1 6
szb Pdo (Z(Pbo - Pca) 2(})bo + Pa.))

And the escape area,
Ae = Aezz + Aef)g + AepcPc + Aepbe + AewC1 (28)

where ( is the amplitude of the incident wave and
A, = Ns /dl,
!

-7, /l:vdl,

AeO

I}
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2
w
epc  — s — Ts w l,
Age = 1 /szodDdl 7 /ICP d
wb
Agp = =1 J popd
A = -1 /lcwdl.

(pw and (,, are the surface elevations due to the cushion pressure and of the incident wave,
respectively. And the outlet flow becomes

Qe = Qezz + Qeae + ercPc + erbe + Qewc, (29)
where
Qez k V 2PCO/pC0A€Z’
Qe& k V 2Pco/pcerBv
pnamna 1 6
erc k 2Pco/pco (Aepc + Aeo [2Pco - 2(Pco + Pa)J) >
erb k V 2P, co/ pcerpIn
Qew k V 2Pco/pcerw-
And the time rate of volume change is
Ve = Viz + Vo + ViePe + Vo Py + Vi, (30)
where
P,(1+ D"
Vz = c s/ 2 h2 S )
Ac = z(w ) Pydtan
P,(1+ D)
= —Acc s 2 h2 = l’
Ve Az, +1 /l(w + )_—_———Pbodtanwxd
_ 2, p2y W 2, 32y Pl + D)
Vie = Vi + /I(w + B pmdl 4, /I(w R
b
_ 2 2
Voo = - [t W
_ P,(1+ D"
Vw = —Vew 3 2 h2 e e wli,
o fr s B

where V,,, is the volume change due to the free surface deformation excited by the cushion
pressure and V,,, due to the incident wave (both will be given in the next section).

3.2 Free Surface Deformation
The deformation of free surface due to the cushion pressure is obtained by Rhee and

Lee[10]. We use their results, and just write down only the assumptions and methods of
calculation.
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The water is assumed to be incompressible and inviscid, and the depth of water is infinite.
The cushion pressure is replaced with the pressure patch which oscillates and translates with
a constant speed on the otherwise calm water. The shape of the pressure patch is restricted
within a polygonal one. The free surface deformation is obtained in the framework of linear
potential theory. The resulting free surface deformation is proportional to the pressure acting,
2.€.

pr'Pc

The free surface elevation of the regular head waves incoming from the positive z-axis is
Caei(lc[z+Ut]+wt) — Caei(kz+w,t) — Cw . Ca (31)
where

we=w+Uk |, k=uw?/g

o=t (= et

Here (, is a wave amplitude, k is the wave number, w a circular frequency of incoming wave
and w, an encountering frequency.

The escape area due to the free surface deformation is obtained by integrating the free
surface elevations along the skirt perimeter, and the volume changes Vi, Vew are obtained by
integrating the free surface elevation over the cushion area. The integration over the cushion
area is transformed to the integral along the skirt perimeter by use of Stoke’s theorem.

3.3 Skirt Forces

In section 2, the force acting on the skirt is analyzed locally. Each element of the skirt is
assumed to move independently, and the frictional force due to the contact of the finger with
the water surface is neglected.

Forces and moment of the skirt system can be obtained by integrating the local forces as

Fo= [apy,
M, =~ [2dFy + [(z + h)sin BdFy, (32)

where dFy and dFy are the vertical and horizontal force component of the skirt system,
respectively and /7 is the angle of skirt hemline to the positive z-direction.

From the results in section 2, the vertical force of the skirt system can be obtained as
follows,

F, = F,z + F4f + Fp.P. + F Py + Fu(, (33)
where
1+ D
F, = -nP, /———dl
K ! tan®

1+ D
F, = SPC,,/ dl
b K ! tan ¢
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w 1+ D
Fp = /l Zdl+ 0P /, o el

b
Fp = - /l S
1+D
Fw = .9Pco/ wdl
n | tan v G
The bow-down pitching moment is
Ms = MzZ + Mgb + MpcPc + Mpbe + MwCa (34)
where
1+D .
= 54 co - sPco/ dl
M, 7, P, /z tan g zdl — 7 I(ZG + h)sin 8
My, = —-n,P, 1t+ z z2dl — n,P., /(za + h) sin fzdl
M, = - / Zdl = 1,P / (,,wwdl + 13 Pay / 2 + h) sin BCud
= —zdl
Mpb [le
1+D
T 1+ D dl P / (26 + h) sin Bludl,

where z¢ is the vertical position of the center of gravity.
3.4 Equations of Motions

The heave and pitch equations of motion about the origin of coordinate is

mi—mzgh = AP+ F,, (35)
I6 —mazgi = —Axz.P.+ M, (36)

where m is the mass of the craft and I the moment of inertia, x4 the longitudinal position of
the center of gravity.
The equations of conservation of mass in the plenum chamber and the bag and duct are

Cpcl:)c = Q Qe_ ¢y (37)
Cwhy = —Q;+Qy, (38)
where
6V, oVy

Cpc = PCO + Pa ) Cpb = m. (39)

The craft motions can be obtained by solving these four equations simultaneously. Using
the variables appeared in preceding sections, we may rewrite the equations of motions as
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follows,

‘/zz + Qezz + ‘/09 + Qe«?a + (Cpc + ‘/pc)Pc + (erc - Qipc)Pc

VP + (Qepp — Qipp) o = =Vl — Qew(, (40)
. 1
' P, ~ ————— | Py =
QP+ O+ (@ = e ) =0 (a1
mz ~ F,z — mzgh — Fyf — (Ac + Fye) P — FpPy = Fu(, (42)
—mzeE — Myz 4 16 — Mpb + (Ao — Mpe) Po — My Py = MG, (43)

Since the incident wave is sinusoidal in time, we assume the motions are sinusoidal also,
thus the above equations turn into the simultaneous algebraic equations.

4. NUMERICAL RESULTS

To investigate the effects of a skirt deformation on the motion response of an ACV in
waves, the heave and pitch response of a Plenum-Chamber Type ACV with a bag-finger type
skirt in regular head waves have been calculated by using a linear theory. The schematic views
of the craft and the bag-finger skirt adopted for the present computations are shown in Figure
1 and 2, and the principal particulars are shown in Table 1 and 2. The craft is assumed to have
a constant speed in waves, and the motion responses are calculated in a frequency domain at
cushion length based Froude numbers of 1.0 and 1.5. The cushion length of the craft is 20
m. In all figures, the motion responses of the craft having same principal particulars in Table
1, but with a rigid skirt, are shown as a solid line for a reference. The heave responses were
nondimensionalized by the incident wave amplitude and the pitch responses by the maximum
slope of the incident wave.

Table 1. Principal particulars of the craft and coeflicients
B/L 0.5 Ai/L* 0.01
m/p,L? | 0.006 Vy/L? 0.0125
I/p,L% | 3.25%x107* |l k 0.6
2¢/L 0.05 C1/pw9L 0.04
zg/L 0 Cayy/L3/gp2 1 0.0
h/B 0.1 CsL*/ pu -30.

Table 2. Particulars of the bag-finger skirt
l,/B | 0.07 w/B | 0.02
b/B | 0.05 Y 45°
d/B | 0.1 Ns 1

In Figures 3 and 4, the effect of a ratio of bag to cushion pressure on the motion response
was shown. In the calculation, the ratio of bag to cushion pressure was obtained by changing
the inlet area. The pressure in the bag, P, 6257, 4369, 3484 (N/m?) were corresponded to
the nondinmensionalized inlet area, A;/L?, 0.005, 0.01, 0.015, respectively, while the cushion
pressure was kept a constant value of 2412 (N/m?). And the skirt responsiveness factor
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D were 0.8092, 0.7267, 0.6573 and the skirt response-force factor D' 0.1283, 0.1946, 0.2566
respectively. The motion response increased as the pressure in the bag increased and as D’
decreased.

In Figures 5 and 6, the motion responses were calculated for several values of d/B. The
calculations were carried out for the values of 0.07, 0.10, 0.13, and D and D’ could be obtained
as 0.6096, 0.7267, 0.7898 and 0.3032, 0.1946, 0.1432 respectively. The motion responses did
not change significantly for this case.

In Figures 7 and 8, the motion responses were calculated with various b/B’s. For the values
b/B, 0.02, 0.05, 0.08 were used, and in this case D and D’ were not changed and their values
were 0.7267 and 0.1946 respectively. It can be known that the motion response increases as
b/B decreases. However, since D and D' is not affected by b/B, the new formulation for D
and D' needed to include this effect.

Figures 9 and 10 showed the effect of vw/B on the motion responses. In this case, D could
not be changed and D’ had the values of 0.3761, 0.1946, 0.05534 according to the different
values of w/B of 0.0, 0.02,0.04, respectively. It can be known that the motion response
increases as w/B increases.

Above results may be summarized as follows: The skirt response-force factor D' can be
used to predict the craft motion. The motion response grows large as D’ decreases, and the
values of D' can be easily changed by changing the values of w/B.

On the other hand, the skirt responsiveness factor D can be used to predict the skirt
deformation, as D decreases, the skirt deformation becomes large, and a negative value of D
indicates that the unstable skirt deformation may happen.
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Figure 3: Motion response with various A4;/L?'s at F,, = 1.0. Solide line is for the rigid skirt
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Figure 8: Motion response with various b/B’s at F, = 1.5. Solide line is for the rigid skirt
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44 Deformation Model of a Bag-Finger Skirt, Motion Response of an ACV in Waves

2 3 Lix
4.0 1 L / 15 2.0
o]
2 o
LN - Q.00 Gu:))ﬁ
0 3 0 w/8 ———- 0.02 C st 1.5 +
£ cw®
o® —--— 0.04 ac
ac o
nao g-;—«
-~ _
T o 2.0 Eg
_cg Lo
OE >E
M
=2 1.0+ 0T
P TC
ac 5
2 b4
z
0.0 T
0 2 a4 wy/Lfg 6

Figure 10: Motion response with various w/B’s at F,, = 1.5. Solide line is for the rigid skirt

5. CONCLUSIONS

A simplified model has been developed to explain the skirt deformation due to the pressure
change in the bag and plenum chamber and due to the water surface elevation. This model
can also predict the skirt force.
A series of numerical calculations for the craft motion has been carried out for the heave
and pitch response with different values of inlet area and skirt parameters. Through this
investigation, our findings are:

1. The motion response grows large as the skirt response-force factor I decreases.

2. To reduce the motion response by increasing D', one should increase the inlet area, or
decrease d/B or w/B.

3. The skirt deforms more easily as the skirt responsiveness factor D decreases. To reduce
D, the inlet area should be increased or d/B should be decreased. is needed.

It is concluded that the skirt responsiveness factor D and the skirt response-force factor D’
can be used to predict of the skirt responsiveness and the craft motion respectively. It is
desirable to compare the present results with experimental measurements in the future. It is
also desirable to investigate on additional factors including the effect of b/B.
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APPENDIX: The Restoring Coefficient of a Bag

Consider the simplified model of a bag shown below.

Since the bag is attached to the structure with hinge, only the force on the bag is trans-
mitted to the structure. The lateral force acting on the bag can be represented as follows,

T(cospy + costpy) = d(P, — Py). (A1)
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where T is the tensile force of the bag and can be considered constant along the bag, and d
is the distance between two points that meet the structure. The upward force acting on the
bag can be represented as follows,

T(sin 1/)2 — sin 1/)1) = F(). (AZ)

When the upward force changes with an amount of AF| and in consequence 1, t» change
with an amount of Ay, A, respectively, then the upward force becomes

Fy + AF = T(sin(¢y + Avhy) — sin(yy + Avy)). (A.3)
Thus AF becomes

AF

i

T (SiIl(’L/JQ + A’l/)z) - sin(wl + A'l/)l) — 8in ’(/)2 + sin ¢1)
= T {(costrAhy — cosP1AY1). (A.4)

If we assume Ay, = —~AY; = Ay, then
AF = T(cos 1y + cos ) Ar. (A.5)

Substituting (A.1) into (A.5), we obtain
AF =d(P, — Py)AY (A.6)

Thus the restoring coefficient of a bag with respect to the angular deformation can be written
as follows,
dF

= 4P P) (A7)



