• Title/Summary/Keyword: Curved-beam element

Search Result 133, Processing Time 0.023 seconds

A New Higher-Order Hybrid-Mixed Element for Curved Beam Vibrations (곡선보의 자유진동해석을 위한 고차 혼합요소)

  • Kim Jin-Gon;Park Yong-Kuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.151-160
    • /
    • 2006
  • In this study, we propose a new efficient 2-noded hybrid-mixed element for curved beam vibrationshaving a uniform and non-uniform cross section. The present element considering transverse shear strain is based on Hellinger-Reissner variational principle and introduces additional nodeless degrees for displacement field interpolation in order to enhance the numerical performance. The stress parameters are eliminated by the stationary condition and then the nodeless degrees are condensed out by the Guyan reduction. In the performance evaluation process of the present field-consistent higher-order element, we carefully examine the effects of field consistency and the role of higher-order interpolation functions on the hybrid-mixed formulation. Several benchmark tests confirm e superior behavior of the present hybrid-mixed element for curved beam vibrations.

Free Vibration Analysis of Thin-walled Curved Beams with Unsymmetric Cross-section (비대칭 단면을 갖는 박벽 곡선보의 자유진동 해석)

  • 김문영
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.41-54
    • /
    • 1999
  • For free vibration of non-symmetric thin-walled circular arches including restrained warping effect, the elastic strain and kinetic energy is derived by introducing displacement fields of circular arches in which all displacement parameters are defined at the centroid axis. The cubic Hermitian polynomials are utilized as shape functions for development of the curved thin-walled beam element having eight degrees of freedom. Analytical solution for in-plane free vibration behaviors of simply supported thin-walled curved beams with monosymmetric cross-sections is newly derived. Also, a finite element formulation using two noded curved beams element is presented by evaluating elastic stiffness and mass matrices. In order to illustrate the accuracy and practical usefulness of this study, analytical and numerical solutions for free vibration of circular arches are presented and compared with solutions analyzed by the straight beam element and the ABAQUS's shell element.

  • PDF

Free Vibrations of Horizontally Curved Beams with Transient Curve (완화곡선을 갖는 수평 곡선보의 자유진동)

  • 이병구;진태기;이태은
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.82-88
    • /
    • 2002
  • This paper deals with the free vibrations of horizontally curved beams with transition curve. Based on the dynamic equilibrium equations of a curved beam element subjected to the stress resultants and inertia forces, the governing differential equations are derived for the out-of-plane vibration of curved beam wish variable curvature. This equations are applied to the beam having transition curve in which the third parabolic curve is chosen in this study. The differential equations are solved by the numerical procedures for calculating the natural frequencies. As the numerical results, the various parametric studies effecting on natural frequencies are investigated and its results are presented in tables and figures. Also the laboratory scaled experiments were conducted for verifying the theories developed herein.

Free Vibrations of Horizontally Curved Beams Resting on Winkler-Type Foundations (Winkler형 지반위에 놓인 수평 곡선보의 자유진동)

  • 오상진;이병구;이인원
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.524-532
    • /
    • 1998
  • The purpose of this paper is to investigate the free vibrations of horizontally curved beams resting on Winkler-type foundations. Based on the classical Bernoulli-Euler beam theory, the governing differential equations for circular curved beams are derived and solved numerically. Hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered in numerical examples. The free vibration frequencies calculated using the present analysis have been compared with the finite element's results computed by the software ADINA. Numerical results are presented to show the effects on the natural frequencies of curved beams of the horizontal rise to span length ratio, the foundation parameter, and the width ratio of contact area between the beam and foundation.

  • PDF

Impact Characteristics of Glass Fiber Reinforced Composite Curved Beams w.r.t. Pre-load (예 하중이 유리섬유 복합재료 곡선 보의 충격특성에 미치는 영향)

  • Lee, Seung-Min;Lim, Tae-Seong;Lee, Dai-Gil
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.162-167
    • /
    • 2004
  • The low velocity impact characteristics of composite laminate curved beams are investigated to increase damage tolerance and reduce the deflection. Drop weight impact tests of the composite curved beam were performed with respect to pre-load, then the damage after impact was measured by macrography. Also, finite element analyses were performed using ABAQUS to investigate the stress state of composite curved beam with respect to pre-load and impact. From the investigation, it was found that pre-load of the composite curved beams had much influence on impact damage of the curved beam, which showed good agreement with the experiment results.

  • PDF

3-Node Relaxed-Equiribrium Hybrid-Mixed Curved Beam Elements (완화된 평형조건을 만족하는 응력함수를 가지는 3절점 혼합 곡선보요소)

  • Kim, Jin-Gon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.153-160
    • /
    • 2008
  • In this study, we propose a new three-node hybrid-mixed curved beam element with the relaxed-equiribrium stress functions for static analysis. The proposed element considering shear deformation is based on the Hellinger-Reissner variational principle. The stress functions are carefully chosen from three important considerations: (i) all the kinematic deformation modes must be suppressed, and (ii) the spurious constraints must be removed in the limiting behaviors via the field-consistency, and (iii) the relaxed equilibrium conditions could be incorporated because it might be impossible to select the stress functions and parameters to fully satisfy both the equiribrium conditions and the suppression of kinematic deformation modes in the three-node curved beam hybrid-mixed formulation. Numerical examples confirm the superior and stable behavior of the proposed element regardless of slenderness ratio and curvature. Besides, the proposed element shows the outstanding performance in predicting the stress resultant distributions.

Segmental Analysis of Curved Non-Prismatic Prestressed Concrete Box Girder Bridges (시공단계를 고려환 곡선변단면 프리스트레스트 콘크리트 박스거더교량의 해석)

  • Park, Chan Min;Kang, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.71-81
    • /
    • 1994
  • A method is presented for the analysis of curved segmentally erected prestressed concrete box girder bridges including time-dependent effects due to load history, temperature history, creep, shrinkage, aging of concrete and relaxation of prestressing steel. The segments can be either precast or cast-in-place. Thin-walled beam theory and finite element method are combined to develop a curved nonprismatic thin-walled box beam element. The element consists of three nodes and each node has eight displacement degrees of freedom, including transverse distortion and longitudinal warping of the cross section.

  • PDF

In-plane vibrations of cracked slightly curved beams

  • Oz, H. Ridvan
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.679-695
    • /
    • 2010
  • In-plane vibrations of slightly curved beams having cracks are investigated numerically and experimentally. The curvature of the beam is circular and stays in the plane of vibration. Specimens made of steel with different lengths but with the same radius of curvature are used in the experiments. Cracks are opened using a hand saw having 0.4 mm thickness. Natural frequencies depending on location and depth of the cracks are determined using a Bruel & Kjaer 4366 type accelerometer. Then the beam is assumed as a Rayleigh type slightly curved beam in finite element method (FEM) including bending, extension and rotary inertia. A flexural rigidity equation given in literature for straight beams having a crack is used in the analysis. Frequencies are obtained numerically for different crack locations and depths. Experimental results are presented and compared with the numerical solutions. The natural frequencies are affected too much due to larger moments when the crack is around nodes. The effect can be neglected when it is at the location of maximum displacements. When the crack is close to the clamped end, the decrease in the frequencies in all modes is very high. The consistency of the results and validity of the equations are discussed.

A spatial displacement model for horizontally curved beams

  • Jiang, Z.G.;Luo, Q.Z.;Tang, J.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.1
    • /
    • pp.151-157
    • /
    • 2003
  • A new approach to the analysis of horizontally curved beams is presented in this paper. The proposed method simplifies a two-dimensional structure into a one-dimensional structure just like a normal beam for structural analysis and, therefore, reduces the computational effort significantly.

Free Vibration Analysis of Non-symmetric Thin-Walled Curved Beams with Shear Deformation (전단변형을 고려한 비대칭 박벽 곡선보의 자유진동해석)

  • Kim, Nam-Il;Kim, Moon-Young;Cheol, Min-Byoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.1-13
    • /
    • 2003
  • For spatial free vibration of non-symmetric thin-walled curved beams with shear deformation, an improved formulation is proposed in the present study. The elastic strain and the kinetic energies are first derived by considering constant curvature and shear deformation effects due to shear forces and restrained warping torsion. Next equilibrium equations and force-deformation relations are obtained using a stationary condition of total potential energy. And the finite element procedures are developed by using isoparametric curved beam element with arbitray thin-walled sections. Particularly not only shear deformation and thickness-curvature effects on vibration behaviors of curved beams but also mode transition and crossover phenomena with change in curvatures of beams are parametrically investigated. In order to illustrate the accuracy and the reliability of this study, various numerical solutions for spatial free vibration are compared with results by available references and ABAQUS's shell element.