• Title/Summary/Keyword: Curved surface finishing

Search Result 10, Processing Time 0.022 seconds

Development of Flexible Tool for Curved Surface Finishing (곡면 다듬질용 유연공구 개발)

  • 조성산;유용균;이승영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.141-146
    • /
    • 2000
  • A flexible tool is developed for automatic finishing of curved surfaces without any complicated control technique on three-axes machining center. The tool is made of thermosetting polyurethane elastomer on the surface of which aluminum oxide abrasives are mounted. Performance and durability of the tool are examined by finishing ball-end milled surfaces of high-alloyed tool steel. It is demonstrated that the tool removes cusp successfully without changing overall surface shape in relatively short time.

  • PDF

Determination of Flexible Tool Path in Curved Surface Finishing Based on Contact Analysis (곡면 다듬질에서 접촉해석에 근거한 유연공우 경로 설정)

  • Cho, Sung-San;Lee, Seung-Yeong;Ryu, Yong-Kyoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.69-74
    • /
    • 2000
  • Roughness of curved surfaces finished with flexible tools depends on the tool/work contact pressure and area. In this study, non-Hertzian closely conforming elastic contact theory is employed to analyze the tool/work contact and to generate a tool path producing a constant pressure at initial contact points. Finishing experiments on curved surfaced are conducted using the tool path. For comparison, curved surface finishing is also performed along the tool path producing a constant tool/work interference depth. It is demonstrated that the tool path of constant contact pressure improves the finished surface roughness.

  • PDF

A Study on Characteristics of Die Finishing Using Conductive Elastic Tool (도전성 탄성공구를 이용한 금형연마 특성에 관한 연구)

  • 황찬해;임동재;정해도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.96-102
    • /
    • 2000
  • The finishing process for dies and molds is an important process because it has influence on final quality of products. And it is difficult to automatize finishing process so that the process has depended on expert's skill until now. However, recently a study on development of die automatic finishing machine has been progressed, and actually this machine is applied to fabrication of die. But the research about tooling system is not enough and finishing tool must have high machining efficiency and adaptability of curved surface. So, this study investigated the application of conductive elastic tool which is composed of metal-resin bonded pellet and elastic backing material. The metal-resin bonded pellet is used to finish the surface by conventional mechanical grinding or electro-chemial grinding method. And elastic backing material is used to follow the curved surface. So conductive elastic tool has long lifetime, uniform removal rate and adaptability of curved surface.

  • PDF

Effects of Magnitic Field on Electrochemical Polishing Process (자기장이 전해복합연마공정에 미치는 영향)

  • 김정두;최민석;김동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.108-112
    • /
    • 1994
  • The paper describes the effects of magnetic field on the electrochemical polishing process in the view of ionic in the electrolyte. Theoretical background was suggested how magnetic field increases the material removal efficiency and surface finishing ability Magnetic field changes the jonic movement in the electrolyte from linear motion to curved or complex oscillating one, thus increases the electrolytic current density and, as the results, the finishing efficiency.

  • PDF

A Study on Improvement of Finishing Accuracy Using 3-Axis Machine for Curved Surface Dies (3축 가공기를 이용한 곡면 금형의 연마 정밀도 향상에 관한 연구)

  • Lim, Dong-Jae;Lee, Sang-Jik;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.61-67
    • /
    • 2001
  • The finishing process for die is an important process because it has influence on final quality of products. Recently s study on development of 5-axis die automated finishing machine has been progressed. But die must be moved from the cutting machine to the die automated finishing machine. So manufacturing cost and time increase and machining error occurs by transfer. So, in this study, a 3-axis machining center was applied to die finishing. Because cutting tool can be changed to finishing tool by ATC, both of cutting and finishing process are possible on the machine. However, this application results in the decrease of finishing for the improvement of form accuracy. So this study focused on the generation of finishing tool path suitable to 3-axis die finishing for the improvement of form accuracy. The form accuracy evaluation is performed by the measurement of removal depth using a stylus profilometer. From the result, it is confirmed that form accuracy was improved less than 2$\mu$m of removal depth error.

  • PDF

A Study on the Curved Form Generation Methodology of the Brick Architecture by Stretcher Bond - Focused on the Parametric Design Process - (길이쌓기에 따른 벽돌건축의 곡면형태 생성방법에 관한 연구 - 파라메트릭 디자인 프로세스를 중심으로 -)

  • Cho, Heayon;Lee, Hyunsoo
    • Korean Institute of Interior Design Journal
    • /
    • v.26 no.6
    • /
    • pp.163-171
    • /
    • 2017
  • Brick is not only aesthetically beautiful and emotional material, but also eco-friendly and good building commodity for human health. Nonetheless, the use of brick has declined, due to the difficulty of building high-rise buildings and the limitation of the free form implementation. However, modern society is increasingly interested in environmentally friendly finishing materials for solving environmental problems. From this point of view, the brick architecture is being reexamined as a material to improve the living environment and to provide comfort without destroying nature. In addition, the development of digital technology enables the implementation of various types of masonry method and curved forms. Parametric design is one of the ways to realize the curved forms and various architectural expressions for brick architecture. In this background, the purpose of this study is to develop algorithms that can easily generate curved brick walls through parametric design, enable various pattern designs, and respond to real-time feedback. The details of the study are as follows. First of all, we examine organic architecture, the trend of brick architecture, and the concept of parametric design. Secondly, In order to generate curved surface with complex curvature, major planning factors affecting form generation are examined. Finally, we develop a parametric design method that consists of generating a curved surface for brick arrangement, implementing a parametric algorithm, and generating a curved form using bricks. Consequentially, we propose an algorithm that can maximize the use of ready-made bricks without using cut bricks to design curved walls and present efficient and economical design alternatives.

Analysis of Polishing Mechanism and Characteristics of Aspherical Lens with MR Polishing (MR Polishing을 이용한 비구면 렌즈의 연마 메커니즘 및 연마 특성 분석)

  • Lee, Jung-Won;Cho, Myeong-Woo;Ha, Seok-Jae;Hong, Kwang-Pyo;Cho, Yong-Kyu;Lee, In-Cheol;Kim, Byung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.36-42
    • /
    • 2015
  • The aspherical lens was designed to be able to array a focal point. For this reason, it has very curved surface. The aspherical lens is fabricated by injection molding or diamond turning machine. With the aspherical lens, tool marks and surface roughness affect the optical characteristics, such as transmissivity. However, it is difficult to polish free form surface shapes uniformly with conventional methods. Therefore, in this paper, the ultra-precision polishing method with MR fluid was used to polish an aspherical lens with 4-axis position control systems. A Tool path and polishing mechanism were developed to polish the aspherical lens shape. An MR polishing experiment was performed using a generated tool path with a PMMA aspherical lens after the turning process. As a result, surface roughness was improved from $R_a=40.99nm$, $R_{max}=357.1nm$ to $R_a=4.54nm$, $R_{max}=35.72nm$. Finally, the MR polishing system can be applied to the finishing process of fabrication of the aspherical lens.

Development Plan for the First GMT ASM Reference Body

  • Yang, Ho-Soon;Oh, Chang-Jin;Biasi, Roberto;Gallieni, Daniele
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.76.3-77
    • /
    • 2021
  • GMT secondary mirror system consists of 7 segmented adaptive mirrors. Each segment consists of a thin shell mirror, actuators and a reference body. The thin shell has a few millimeters of thickness so that it can be easily bent by push and pull force of actuators to compensate the wavefront disturbance of light due to air turbulence. The one end of actuator is supported by the reference body and the other end is adapted to this thin shell. One of critical role of the reference body is to provide the reference surface for the thin shell actuators. Therefore, the reference body is one of key components to succeed in development of GMT ASM. Recently, Korea Research Institute of Standards and Science (KRISS) and University of Arizona (UA) has signed a contract that they will cooperate to develop the first set of off-axis reference body for GMT ASM. This project started August 2021 and will be finished in Dec. 2022. The reference body has total 675 holes to accommodate actuators and 144 pockets for lightweighting. The rear surface has a curved rib shape with radius of curvature of 4387 mm with offset of 128.32mm. Since this reference body is placed just above the thin shell so that the front surface shape needs to be close to that of thin shell. The front surface has a concave off-axis asphere, of which radius of curvature is 4165.99 mm and off-axis distance is about 1088 mm. The material is Zerodur CTE class 1 (CTE=0.05 ppm/oC) from SCHOTT. All the actuator holes and pockets are machined normal to the front surface. It is a very complex challenging optical elements that involves sophisticated machining process as well as accurate metrology. After finishing the fabrication of reference body in KRISS, it will be shipped to UA for final touches and finally sent to Adoptica in Italy, in early 2023. This paper presets the development plan for the GMT ASM Reference Body and relevant fabrication and metrology plans.

  • PDF

A study on optimal cutting conditions of MCD or NCD coated ball end-mills for finishing (MCD 및 NCD 코팅 볼 엔드밀의 정삭가공에서의 최적절삭조건에 관한 연구)

  • Jong-Su Kim
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.17-23
    • /
    • 2022
  • Recently, several studies are being conducted to achieve a curvature of 180° or more for the edge of the display glass. The thermocompression molding process is applied to the manufacture of curved glass, and high hardness G5 graphite is used as the mold material to withstand the impact applied to the mold. G5 graphite has high hardness and strong brittleness, which makes tool wear and surface damage easy during machining. Therefore, the demand for diamond-coated tools with good mechanical properties is increasing in the G5 machining field. In this study, the optimal cutting conditions and machinability of a nanodiamond (NCD) coated ball end mill being developed by a tool manufacturer were analyzed and evaluated. For this purpose, the same test was performed on the microdiamond (MCD) coated ball end mill and compared together. In summary, the machinability of MCD and NCD coated tools showed better cutting performance at a cutting speed of 282 m/min, a feed rate of 1,400 mm/min, and a radial depth of cut of 0.08 to 0.1 mm.

Development of Shape refining process of VLM-ST Parts Using Noncontacting Hot Tool (비접촉식 열공구를 이용한 VLM-ST 제품의 미세 형상 가공 공정 개발에 관한 연구)

  • 김효찬;이상호;안동규;양동열
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.149-158
    • /
    • 2004
  • In most RP processes, the inherent stair-stepped surfaces and shrinkage-induced warping of the parts require post processing such as surface finishing. To minimize such defects, VLH-ST, a newly developed RP process, employs a 3.9-mm thick expandable polystyrene (EPS) foam sheet and a hot wire to contour it to have slant linear-interpolated sides. The use of relatively thick sheets for layers, however, limits the process capability of constructing fine details, especially smaller than the layer thickness. This study is focused on the development of a post processing method fo fine details of VLM-ST parts. The post-processing tool was designed to meet all the requirements for the desirable post processing. It adopted a hot wire as a means of melting the EPS foam sheet. Various basic experiments on the post processing were carried out to obtain the optimal process conditions. The dominant process parameters such as the radiated heat input, the tool speed, and the gap between the tool tip and the foam sheet (tool height) were considered in the experiments. The effectiveness of the developed post-processing method fo forming or engraving fine details on the VLM-ST parts has been thus demonstrated. The experiments on engraving several sets of letters, such as CANESM, 인간, and 한국과학기술원, on the EPS foam sheet were carried out. In addition, a flowery shape was engraved on a three-dimensionally curved surface of a pottery-shape VLM-ST part.