• Title/Summary/Keyword: Curved panels

Search Result 86, Processing Time 0.021 seconds

Development of the Preliminary Cost Estimate Method for the Free-Form Building Facade Trade in Conjunction with the Panel Optimization Algorithm Process (곡면 최적화 알고리즘을 활용한 비정형 건축물 외장공사비 개산견적에 관한 연구)

  • Lim, Jang Sik;Ock, Jong Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.4
    • /
    • pp.95-106
    • /
    • 2014
  • The outer surfaces of free form buildings contain panels with two-directional curvatures. To construct these panels, complex geometric surfaces should be divided into forms and sizes that can be manufactured and constructed efficiently. Because the bigger the curvatures of these panel, the more expensive the construction costs, these complex curvatures should go through optimal process of reinterpretation to minimize the curved surfaces with complex two-directional curvatures, which is called panel optimization. Small construction and design companies have trouble in calculating even rough estimate and cannot adjust expected construction cost of the panels based on comparison of design alternatives in conjunction with panel optimization process due to lack of knowledge and experience. This study conducts the research that can support designers' cost decision-making in the design stage of the free form buildings with respect to the panel optimization process. A 3D commercial application specialized to modeling free form shapes is used for the purpose.

An Experiment on the Manufacture of Free-Form Panel for Analysis of the Requirements of Concrete Extrusion Nozzles (콘크리트 압출 노즐의 요구사항 분석을 위한 비정형 패널 제작 실험)

  • Kim, Hye-Kwon;Youn, Jong-Young;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.91-92
    • /
    • 2023
  • With the development of technology, interest in the implementation of free-form buildings is increasing, and research on producing free-form panels is being conducted accordingly. Since free-form buildings are curved and consist of geometric shapes, there are many problems with the production technology of free-form panels that implement them. Due to the inability to reuse molds, the cost of disposal of construction waste and waste of manpower for assembly increase the construction period and construction cost. To improve these limitations, a 3D printed concrete nozzle for FCP production was developed. However, this technology is not quantitatively extruded according to the shape of the panel, and there is a problem that residues are generated. Therefore, an free-form panel extrusion experiment was conducted to analyze the limitations of existing nozzles and to analyze the requirements for the development of new concrete extrusion nozzles. Existing nozzles were unable to be quantitatively extruded, resulting in errors. Due to the weak pressure of the screw and the inability to adjust the internal pressure, detailed extrusion speed control was impossible, and residue generation in the opening and closing device seemed to be the cause. Therefore, a pump capable of quantitative concrete pressure transfer and a pressure control device for easy extrusion of concrete are required. In addition, it is judged that it is necessary to develop an opening and closing device and an extrusion device that do not generate residues. The results of this study are expected to provide information for FCP production and production and to be a basic study of technologies necessary for the production of free-form building panels.

  • PDF

Multi Point Press Stretch Forming System Applied to Curved Hull Plate of Aluminum Ship (알루미늄 선박의 외판 가공을 위한 인장성형 시스템 연구)

  • Bae, Chul-Nam;Hwang, Se-Yun;Lee, Jang-Hyun;Jeong, Uh-Cheul;Kim, Kwang-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.3
    • /
    • pp.188-197
    • /
    • 2012
  • Recently, aluminum ships are constructed more than ever because of the environmental pollution generated by FRP (Fiber Reinforced Plastic) ships. In particular, FRP ships have been replaced by the Aluminum ships. The forming process of the curved aluminum plate has been performed only by labor works without systematic technique. Therefore, it is difficult to construct the aluminum ship that the design satisfies both required propulsion performance and hull design. Present study introduces a MPSF (Multi Point Stretching Forming) that is a flexible manufacturing technique to form large sheet panels of doubly curvature. The hull pieces are stretch-formed over the MPSD (multi-point stretching die) generated by the punch element matrix. In this study, MPSF is applied to deform the doubly curved surfaces of aluminum ship. The forming system including FEA (finite element analysis) of the processes for stretching the plate were carried out by static implicit analysis is suggested. Residual deformation of the surface is modeled by an elasto-plastic contact phenomena while the forming process is simulated by FEA. Finally, the proposed system is also validated, comparing the deformed shape by MPSF with that of object surfaces.

An Experimental Study on the Behavior of Curved Panel Parts Using Composite Materials (복합소재를 활용한 곡면 패널의 부재단위 성능 평가)

  • Park, Hee Beom;Park, Jong-Sup;Kang, Jae-Yoon;Jung, Woo-Tai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.474-480
    • /
    • 2018
  • FRP is a new material that is lightweight, has high strength and high durability, and is emerging as a third construction material in many countries. The composite material panel targeted in this study was a curved member and is the most frequently used arch-shaped member of a structures, such as tunnels. Composite curved panels can be produced in high quality and large quantities through automation operations. On the other hand, the frequency of application is low, and the design criteria and experimental data are lacking. Therefore, this study examined the mechanical performance of the member unit first to verify its performance as structural members of the FRP curved panel. For this purpose, tensile, compression, and connection performance tests were carried out. The tensile tests showed greater tensile strength of specimens with larger curvature, and the compression tests showed that the composite section of a composite material has greater compressive strength than the concrete section. Finally, the test of the performance of the connection showed that the attachment performance of the connection was more than equal to that of the FRP composite material panel.

An Optimal Design of Sandwich Panels with Wire-woven Bulk Kagome Cores (와이어 직조 카고메 다공질 금속을 심재로 갖는 샌드위치 판재의 최적 설계)

  • Lee, Yong-Hyun;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.782-787
    • /
    • 2008
  • First, the effect of the geometry such as the curved shape of the struts composing the truss structure of WBK is elaborated. Then, analytic solutions for the material properties of WBK and the maximum loads of a WBK-cored sandwich panel under bending are derived. A design optimization with the face sheet thickness and the core height selected as the design variables is presented for given slenderness ratios of the WBK core. Unless the face sheet thickness is limited, the optimal design to give the maximum load per weight is always found at a confluence of three failure modes, namely, face sheet yielding, indentation plastic, and core shear modeB plastic.

Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel

  • Dash, Sushmita;Mehar, Kulmani;Sharma, Nitin;Mahapatra, Trupti Ranjan;Panda, Subrata Kumar
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.55-67
    • /
    • 2019
  • The finite solutions of deflection and the corresponding in-plane stress values of the graded sandwich shallow shell structure are computed in this research article via a higher-order polynomial shear deformation kinematics. The shell structural equilibrium equation is derived using the variational principle in association with a nine noded isoprametric element (nine degrees of freedom per node). The deflection values are computed via an own customized MATLAB code including the current formulation. The stability of the current finite element solutions including their accuracies have been demonstrated by solving different kind of numerical examples. Additionally, a few numerical experimentations have been conducted to show the influence of different design input parameters (geometrical and material) on the flexural strength of the graded sandwich shell panel including the geometrical configurations.

A Study on the Concrete Extrusion Method for Precision FCP Fabrication (정밀한 FCP 제작을 위한 콘크리트 압출 방식 연구)

  • Kim, Hye-Kwon;Kim, Ji-Hye;Kim, Sungjin;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.133-134
    • /
    • 2023
  • Free-form buildings have a curved shape and are composed of geometric shapes, which require high precision. Therefore, this study proposed a new extrusion method, a piston method, that improves the precision of FCP by automatically extruding a predetermined amount of concrete by improving the aforementioned limitations. The technology to extrude a predetermined amount of concrete by applying pistons is expected to shorten construction period and increase economic efficiency by improving the precision and productivity of free-form panels.

  • PDF

An Experimental Study on the Behavior of Small Scale Curved Panel Using Composite Materials (복합소재를 활용한 곡면 패널 축소형 실험체의 구조 성능 평가)

  • Park, Hee Beom;Park, Jong-Sup;Kang, Jae-Yoon;Jung, Woo-Tai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.1-8
    • /
    • 2018
  • FRP is a new material that is light, has high strength and high durability, and is emerging as a third construction material inside and outside of countries. However, very few studies have been done on curved FRP construction materials that can be used for tunnels or arched bridges. Because a small composite panel specimen is smaller than a full-size specimen, it can be used in a variety of experiments under different conditions. Therefore, in this study, experiments were performed on a void section, a solid section, a connected solid section, and a sand-coating solid section. The results of the experiment show that the connection of composite curved panels with longitudinal connections provides almost equivalent performance to that of a single panel. However, it is necessary to strengthen the connections, since the connections that are most susceptible to damage will break first.

Case Study of Concrete Surface Design and Construction Method for Freeform Building Based on BIM -Focused on Tri-Bowl, Korea-

  • Ryu, Han-Guk;Kim, Sung-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.347-357
    • /
    • 2012
  • While it is generally possible to install curved panels manufactured in a factory within the permitted error range on an irregular surface frame of concrete or steel, it is difficult and expensive. Freeform architecture is thus designed and constructed differently from formal buildings. In order to more easily and inexpensively actualize freeform architecture, Building Information Modeling (hereinafter referred to as BIM) has recently been applied in the construction industry. However, the related research and case analyses are not sufficient to identify the implications and contributions of freeform buildings in future similar projects. Therefore, this research will study design and construction methods for freeform surfaces, particular the concrete surface frame of freeform buildings based on BIM, focused on the Tri-Bowl project. This study attempts to analyze the pros and cons of each method for the concrete surface frame of the Tri-Bowl, and then presents the lessons learned and implications related to the design and construction process of the freeform architecture. Several implications for design and construction of concrete surface frame of the freeform building, the Tri-Bowl, are found. The first is that manufacturing and installation of a curved concrete frame is precisely performed based on the exact numerical values of materials and installation made using BIM 3D technologies, such as CATIA and Rhino. The second is that close and continuous collaboration among the different participants in the construction of the Tri-Bowl allowed them to cope with virtual conditions. The third is that design and construction processes have changed, and high quality of the surface frame of a freeform building is required.

A Study on the Resistance Welding of Metallic Sandwich Panel : Part 1 - Determination of Process Parameters (저항 용접을 이용한 금속 샌드위치 판재 접합에 관한 연구 : Part 1 - 공정변수의 선정)

  • Lee Sang-Min;Kim Jin-Beom;Na Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.49-54
    • /
    • 2005
  • Inner Structured and Bonded(ISB) panel, a kind of metallic sandwich panel, consists of two thin skin plates bonded to a micro-patterned inner structure. Its overall thickness is $1\~3mm$and it has attractive properties such as ultra-lightweight, high efficiency in stiffness-to-weight and strength-to-weight ratio. In many previous studies, resistance welding, brazing and adhesive bonding are studied for joining the panel. However these methods did not consider productivity, but focused on structural characteristics of joined panels, so that the joining process is very complicated and expensive. In this paper, a new joining process with resistance welding is developed. Curved surface electrodes are used to consider the productivity and the stopper is used between electrodes during welding time to maintain the shape of inner structure. Welding time, gap of electrodes and distance between welding points are selected as the process parameters. By measuring the tensile load with respect to the variation of welding time and gap of electrodes, proper welding conditions are studied. Welding time is proper between 1.5-2.5cycle. If welding time is too long, then inner structures are damaged by overheating. Gap of electrode should be shorter than threshold value fur joint strength, when total thickness of inner structure and skin plate is 3.3mm, the threshold distance is 3.0mm.