• 제목/요약/키워드: Curved bridges

검색결과 94건 처리시간 0.022초

신뢰성에 기초한 강상형 곡선램프교의 안전도 및 잔존내하력 평가 (Reliability-Based Assessment of Safety and Residual Load Carrying-Capacity of Curved Steel-Box Ramp Bridges)

  • 조효남;최영민;민대홍
    • 한국강구조학회 논문집
    • /
    • 제9권1호통권30호
    • /
    • pp.51-63
    • /
    • 1997
  • Highly curved steel-box bridges are usually constructed as ramp structures for the highway interchange and metropolitan elevated highway junction, but a number of these bridges are deteriorated and damaged to a significant degree due to heavy traffic. The main objective of the study is to develop a practical reliability-based assessment of safety and residual load carrying-capacity of existing curved steel-box ramp bridges. In the paper, for the realistic assessment of safety and residual load carrying-capacity of deteriorated and/or damaged curved steel-box bridges, an interactive non-linear limit state model is formulated based on the von Mises's combined stress yield criterion. It is demonstrated that the proposed model is effective for the assessment of reliability-based safety and the evaluation of residual load carrying-capacity of curved steel-box bridges. In addition, this study comparatively shows the applicability of various reliability analysis methods, and suggests a practical and effective one to be used in practice.

  • PDF

Seismic investigation of pushover methods for concrete piers of curved bridges in plan

  • Ahmad, Hamid Reza;Namdari, Nariman;Cao, Maosen;Bayat, Mahmoud
    • Computers and Concrete
    • /
    • 제23권1호
    • /
    • pp.1-10
    • /
    • 2019
  • The use of non-linear analysis of structures in a functional way for evaluating the structural seismic behavior has attracted the attention of the engineering community in recent years. The most commonly used functional method for analysis is a non-linear static method known as the "pushover method". In this study, for the first time, a cyclic pushover analysis with different loading protocols was used for seismic investigation of curved bridges. The finite element model of 8-span curved bridges in plan created by the ZEUS-NL software was used for evaluating different pushover methods. In order to identify the optimal loading protocol for use in astatic non-linear cyclic analysis of curved bridges, four loading protocols (suggested by valid references) were used. Along with cyclic analysis, conventional analysis as well as adaptive pushover analysis, with proven capabilities in seismic evaluation of buildings and bridges, have been studied. The non-linear incremental dynamic analysis (IDA) method has been used to examine and compare the results of pushover analyses. To conduct IDA, the time history of 20 far-field earthquake records was used and the 50% fractile values of the demand given the ground motion intensity were computed. After analysis, the base shear vs displacement at the top of the piers were drawn. Obtained graphs represented the ability of a cyclic pushover analysis to estimate seismic capacity of the concrete piers of curved bridges. Based on results, the cyclic pushover method with ISO loading protocol provided better results for evaluating the seismic investigation of concrete piers of curved bridges in plan.

강곡선 1형보 복부판의 탄성 전단좌굴 (Elastic Shear Buckling of Curved Web Panels)

  • 김재석;김종헌;강영종;한택희
    • 한국전산구조공학회논문집
    • /
    • 제17권2호
    • /
    • pp.95-104
    • /
    • 2004
  • 최근 건설이 증가하고 있는 곡선교는 1960년대 까지는 직선 거더의 조합으로 구성하여 건설되어 왔으나, 현재 곡선 거더의 사용이 증대되고 있는 추세이다. 곡선 거더를 사용하는 경우에는 시간과 건설비용의 절감 뿐 아니라 미관상으로도 유리하다. 판형교에서는 전단좌굴을 방지하기 위하여 전단 좌굴강도의 검토와 보강재의 설계가 반드시 필요하다. 직선 복부판과 비교하여 곡선 복부판은 형상비와 곡률에 따라 전단좌굴 강도가 변화하나, 현재까지 곡선 복부판의 전단좌굴강도에 대한 연구는 그다지 이루어지지 않은 실정이다. 따라서 본 연구에서는 곡선복부판의 선단좌굴 강도를 유한요소해석을 통하여 알아보고 이론 산정하는 간략식을 제시하였다.

받침배치에 따른 곡선교의 동적응답에 관한 연구 (Dynamic Response of Curved Bridges by Support Arrangement)

  • 김상효;이용선;김태열
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.185-191
    • /
    • 2002
  • In this study a 3-dimensional analytical model is developed, which can analyses dynamic responses of curved bridges subject to moving vehicles. A 5-axle semi-trailer is modeled to simulate the actual tire forces that are redistributed by vehicle rolling effect due to the centrifugal force. The 1-span curved bridge with two steel box girders is modeled using the frame elements. The dynamic response characteristics of curved box girder bridges are examined and compared for two different support conditions. One is the case that two shoes are arranged at the outer sides of box girders with larger space between the two shoes and the other is that two shoes at the center of each box girder. In the curved bridges, the dynamic effect of moving vehicles influences the reaction force much more than other responses, such as displacement or stress, especially the upward reaction of inner-radius shoes. It is more advantageous for the reaction considering dynamic effect when shoes are arranged further at the outer sides of box girders than when shoes at the center of each box. The shoes for curved bridges with two-box girder system should be arranged to have larger distance.

  • PDF

곡선 R.C라멘교의 해석적 고찰 (An Investigation on the Analysis of Curved Rahmen Bridge)

  • 오세준;정원기;박명균;최성권;이은호;박호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.498-501
    • /
    • 2006
  • R.C. Rahmen bridges have been widely constructed in the location of interchange or narrow road crossing. In addition, skewed or curved rahmen bridges are mostly constructed in comparison with normal rahmen bridges for the purpose of maintaining the route of road or considering the beauty of bridge. However, due to the functional characteristics, rahmen bridges are sustained under the direct vehicle loads and the side directional earth pressure so that the stress concentration with respect to the geometrical eccentricity can be occurred if rahmen bridges are constructed in large amount of skew. In this investigation, the behavior of skewed rahmen bridges which is located in curved route has been analysed to investigate the additional effects on the change of stress concentration. As a result, it is judged that the stress of curved rahmen bridges is more concentrated than the stress of straight rahmen bridges in the region of obtuse angle. However, in the middle of slab, the curve does not affect on the stress concentration.

  • PDF

지진하중하에서의 수평곡선I형교의 거동특성 (Behavior of Horizontally Curved I-Girder Bridges under Seismic Loading)

  • 윤기용;성익현;최진유;강영종
    • 한국강구조학회 논문집
    • /
    • 제14권6호
    • /
    • pp.793-802
    • /
    • 2002
  • 수평곡선 I형교에 동적해석을 수행하기 위하여 박판곡선보 이론에 근거 뒴자유도를 포함한 절점당 7자유도를 갖는 곡선보요소와 7자유도 직선보요소를 사용하여 동적해석프로그램 EQCVB를 작성하였다. 이 프로그램에서는 자유진동해석을 위하여 Gupta의 방법을 사용하였고, 지진하중이 작용할 때 동적해석을 수행하기 위하여 Wilson-${\theta}$방법을 사용하였으며, 범용구조해석 프로그램인 ABAQUS를 사용한 해석 결과와 비교하여 프로그램의 효율성과 타당성을 입증하였다. 지진하중 작용시 수평곡선 I형교의 동적 거동 특성을 파악하기 위하여 다양한 예제에 대한 해석을 수행하였다.

수평곡선 격자형교의 자유진동해석 (Free Vibration Analysis of Horizontally Curved Multi-Girder Bridges)

  • 윤기용;강영종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.55-61
    • /
    • 1996
  • In the present study, a numerical formulation procedure fer free vibration analysis of thin-walled horizontally curved multi-girder bridges is presented. The presented finite element procedure consists of curved and straight beam elements including warping degree of freedom. The homogeneous solutions of curved beam equations were used for shape functions in numerical formulation to achieve good convergence. In the straight beam element, the third order hermite polynomials were used fer shape functions. The Gupta method was used to solve the eigenvalue problem efficiently. The developed numerical procedure was applied to investigate the characteristics of free vibration of horizontally curved multi-girder bridges with varing subtended angle.

  • PDF

곡선 강박스거더교의 온도거동 분석을 위한 온도분포 예측기법에 관한 연구 (A Temperature Predicting Method for Thermal Behaviour Analysis of Curved Steel Box Girder Bridges)

  • 조광일;원정훈;김상효;여영건
    • 대한토목학회논문집
    • /
    • 제28권1A호
    • /
    • pp.105-113
    • /
    • 2008
  • 곡선 강박스거더교는 부분적인 일사에 의해 교량단면에 불균등한 온도분포와 함께 기타 불리한 하중조건이 복합되어 작용되므로 교량의 수명이 단축되거나 사용성을 저하시킬 수 있는 문제점을 가지고 있다. 따라서 곡선교 설계 시 방위각, 받침배치방식, 형상 등에 따라 온도에 의한 영향을 고려해야 하지만 온도거동의 특성이 명확히 규명되어 있지 않을 뿐만 아니라 현행 설계기준의 규정도 명확하지 못하여 보다 많은 연구가 필요한 실정이다. 본 연구에서는 기존의 연구에서 제안된 일사량 계산식과 열전달 유한요소해석기법을 병용하여 곡선 강박스거더교의 기하학적 형상 및 방위각에 따라 변화하는 온도분포를 보다 쉬운 방법으로 예측하는 기법을 개발하였고 실측된 곡선교의 온도자료를 통해 검증하였다. 또한, 개발된 온도분포예측기법과 3차원 구조해석을 이용하여 일사에 의한 곡선교의 거동을 분석한 결과, 곡선 외측면이 남측을 향하는 경우에서 고정단측 받침의 교축방향과 교축직각방향 반력이 크게 나타났으며 곡선반경이 감소할수록 모든 방향의 반력이 증가하는 경향을 보였다. 본 연구에서 제안한 온도분포예측기법을 바탕으로 향후 관련 연구를 통해 현재의 설계기준을 보완할 수 있는 합리적인 온도하중의 제시가 가능할 것으로 판단된다.

Free vibration characteristics of horizontally curved composite plate girder bridges

  • Wong, M.Y.;Shanmugam, N.E.;Osman, S.A.
    • Steel and Composite Structures
    • /
    • 제10권4호
    • /
    • pp.297-315
    • /
    • 2010
  • This paper is concerned with free vibration characteristics and natural frequency of horizontally curved composite plate girder bridges. Three-dimensional finite element models are developed for the girders using the software package LUSAS and analyses carried out on the models. The validity of the finite element models is first established through comparison with the corresponding results published by other researchers. Studies are then carried out to investigate the effects of total number of girders, number of cross-frames and curvature on the free vibration response of horizontally curved composite plate girder bridges. The results confirm the fact that bending modes are always coupled with torsional modes for horizontally curved bridge girder systems. The results show that the first bending mode is influenced by composite action between the concrete deck and steel beam at low subtended angle but, on the girders with larger subtended angle at the centre of curvature such influence is non-existence. The increase in the number of girders results in higher natural frequency but at a decreasing rate. The in-plane modes viz. longitudinal and arching modes are significantly influenced by composite action and number of girders. If no composite action is taken into account the number of girders has no significant effect for the in-plane modes.

Seismic response prediction and modeling considerations for curved and skewed concrete box-girder bridges

  • Ramanathan, Karthik;Jeon, Jong-Su;Zakeri, Behzad;DesRoches, Reginald;Padgett, Jamie E.
    • Earthquakes and Structures
    • /
    • 제9권6호
    • /
    • pp.1153-1179
    • /
    • 2015
  • This paper focuses on presenting modeling considerations and insight into the performance of typical straight, curved, and skewed box-girder bridges in California which form the bulk of the bridge inventory in the state. Three case study bridges are chosen: Meloland Road Overpass, Northwest Connector of Interstate 10/215 Interchange, and Painter Street Overpass, having straight, curved, and skewed superstructures, respectively. The efficacy of nonlinear dynamic analysis is established by comparing the response from analytical models to the recorded strong motion data. Finally insights are provided on the component behavioral characteristics and shift in vulnerability for each of the bridge types considered.