• Title/Summary/Keyword: Curved approach

Search Result 179, Processing Time 0.023 seconds

Tribological Approach on the Stress Distribution of Wheel-Rail Contact (차륜과 레일 사이의 접촉응력에 관한 트라이볼로지적 해석)

  • 황재용;김기환;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.210-217
    • /
    • 1997
  • This paper presents the numerical results of the stress analysis of wheel-rail contact problems. Two models which have straight and tapered(1:20) contact geometries between the wheelset and rail are analyzed using the finite element approach. From the simulation results we found that the tapered geometry of wheel-rail contact base line showed very stable contact stress distributions for a whole contact position between the wheel and rail in a curved rail section. The FEM computed results may present an optimized geometry of wheel-rail contact in a high-speed railway system.

  • PDF

Nonlinear Behavior of RC Columns Subjected to Cyclic Loadings (반복하중을 받는 철근콘크리트 기둥의 비선형 거동)

  • 곽효경;김선필
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.475-482
    • /
    • 2002
  • A moment-curvature relationship to simulate the behavior of reinforced concrete (RC) columns under cyclic loading is introduced. Unlike previous moment4curvature models and the layered section approach, the proposed model takes into account the bond-slip effect by using a monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The pinching effect caused by axial force is considered with an assumption that the absorbing energy corresponding to any deformation level maintains constant regardless of the magnitude of applied axial lone. The advantages of the proposed model, comparing to layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures. Finally, correlation studies between analytical result and experimental studies are conducted to establish the validity of the proposed model.

  • PDF

Nonlinear Analysis of RC Beams under Cyclic Loading Based on Moment-Curvature Relationship. (모멘트-곡률 관계에 기초한 반복하중을 받는 철근콘크리트 보의 비선형 해석)

  • 곽효경;김선필
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.190-197
    • /
    • 2000
  • A moment-curvature relationship to simulate the behavior of reinforced concrete beam under cyclic loading is introduced. Unlike previous moment-curvature models and the layered section approach, the proposed model takes into consideration the bond-slip effect by using monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The advantages of the proposed model, comparing to layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures. The modification of the moment-curvature relation to reflect the fixed-end rotation and pinching effect is also introduced. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed model.

  • PDF

Nonlinear Analysis of RC Columns under Cyclic Loading Based on Moment-Curvature Relationship (반복하중을 받는 RC기둥의 비선형 해석을 위한 모멘트-곡률 관계의 개발)

  • 곽효경;김선필
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.3-11
    • /
    • 2002
  • A moment-curvature relationship to simulate the behavior of reinforced concrete (RC) columns under cyclic loading is introduced. Unlike previous moment-curvature models and the layered section approach, the unposed model takes into account the bond-slip effect by using a monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The pinching enact caused by axial force is considered with an assumption that the absorbing energy corresponding to any deformation level maintains constant regardless of the magnitude of applied axial force. The advantages of the proposed model, comparing tn layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures.. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed mood.

  • PDF

Orbital Floor Reconstruction through Endoscopic Transnasal Approach Alone (안와하벽 파열 골절에 대한 내시경적 접근법만을 이용한 재건술)

  • Bae, Seong Hwan;Kang, Kyung Dong;Nam, Su Bong;Bae, Yong Chan;Choi, Soo Jong
    • Archives of Craniofacial Surgery
    • /
    • v.13 no.2
    • /
    • pp.99-103
    • /
    • 2012
  • Purpose: Many surgical methods for reconstruction of orbital floor fracture have been reported, which include subciliary approach, transconjunctival approach, transantral and transnasal endoscopic approach, etc. The purpose of this study is to demonstrate a surgical technique and analyze the results of transnasal endoscopic approach with Foley catheter ballooning without implantation of artificial surgical material through subciliary approach. Methods: Between February 2007 and November 2010, 29 orbital floor fracture patients, who had no herniated muscles through bone fragments, were treated through transnasal endoscopic approach with Foley catheter ballooning. Under the endoscopic view, the operator identified the opening of maxillary sinus. After widening of the opening using forceps, the operator reduced the fragmented bone with curved suction tip. Thereafter, 18-Fr Foley catheter was inserted. Four weeks after the operation, the catheter was removed. Results: Preoperatively, 6 patients had diplopias, 4 patients had limitations of extraocular motions and 3 patients had enophthalmos. After removal of the Foley catheter 4 weeks after the operation, 2 patients had diplopias, 1 patient had a limitation of extraocular motion, 1 patient has an enophthalmos and 1 patient had numbness on the cheek. These symptoms were resolved about 6 months after the surgery. Conclusion: The operative technique of Foley catheter ballooning through transnasal endoscopic approach without implantation of the artificial surgical material through subciliary approach can be considered one of the appropriate techniques for orbital floor fracture.

Orbital wall restoring surgery with primary orbital wall fragments in blowout fracture

  • Kang, Dong Hee
    • Archives of Craniofacial Surgery
    • /
    • v.20 no.6
    • /
    • pp.347-353
    • /
    • 2019
  • Most orbital surgeons believe that it's difficult to restore the primary orbital wall to its previous position and that the orbital wall is so thin that cannot be firmly its primary position. Therefore, orbital wall fractures generally have been reconstructed by replacing the bony defect with a synthetic implant. Although synthetic implants have sufficient strength to maintain their shape and position in the orbital cavity, replacement surgery has some drawbacks due to the residual permanent implants. In previous studies, the author has reported an orbital wall restoring technique in which the primary orbital wall fragment was restored to its prior position through a combination of the transorbital and transantral approaches. Simple straight and curved elevators were introduced transnasally to restore the orbital wall and to maintain temporary extraorbital support in the maxillary and ethmoid sinus. A transconjunctival approach provided sufficient space for implant insertion, while the transnasal approach enabled restoration of the herniated soft tissue back into the orbit. Fracture defect was reduced by restoring the primary orbital wall fragment to its primary position, making it possible to use relatively small size implant, furthermore, extraorbital support from both sinuses decreased the incidence of implant displacement. The author could recreate a natural shape of the orbit with the patient's own orbital bone fragments with this dual approach and effectively restored the orbital volume and shape. This procedure has the advantages for retrieving the orbital contents and restoring the primary orbital wall to its prior position.

Evaluation of the Inelastic Seismic Response of Curved Bridges by Capacity Spectrum Method using Equivalent Damping (등가감쇠비를 이용한 역량스펙트럼법에 의한 곡선교의 비탄성지진응답 평가)

  • Joe, Yang-Hee;Cho, Sung-Gook;Ma, Jeong-Suck
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.17-26
    • /
    • 2009
  • The capacity spectrum method (CSM), which is known to be an approximate technique for assessing the seismic capacity of an existing structure, was originally proposed for simple building structures that could be modeled as single-degree-of-freedom (SDOF) systems. More recently, however, CSM has increasingly been adopted for assessing most bridge structures, as it has many practical advantages. Some studies on this topic are now being performed, and a few results of these have been presented as ground-breaking research. However, studies have until now been limited to symmetrical straight bridges only. This study evaluates the practical applicability of CSM to the evaluation of irregular curved bridges. For this purpose, the seismic capacities of 3-span prestressed concrete bridges with different subtended angles subjected to some recorded earthquakes are compared with a more refined approach based on nonlinear time history analysis. The results of the study show that when used for curved bridges, CSM induces higher inelastic displacement responses than the actual values, and that the gap between the two becomes larger as the subtended angle increases.

A Transcultural Reflection on Anglo-Chinese Gardens in the 18th Century (18세기 '중국풍 정원(Anglo-Chinese garden)'의 문화전이에 관하여)

  • Kim, Daesin
    • The Journal of Art Theory & Practice
    • /
    • no.16
    • /
    • pp.201-224
    • /
    • 2013
  • The tradition of the representative art style in the Sinosphere, Shanshui hua, expresses the traditional representation of the harmony and principle of the universe. This tradition is reflected in the Chinese garden. These Chinese gardens were precisely the three-dimension representations of Shanshui hua, a visual form of abstract expression of the oriental philosophical thinking. This research determines and draws attention to the vestiges of the reflection of Shanshui hua in the European gardens through visual art and culture. It will also approach the two subjects, Shanshui hua and garden, from a transcultural view to integrally analyze visual art. The appearance of Anglo-Chinese gardens, reflecting Shanshui hua, foreshowed a big change in traditional European gardens. This is a concrete example of the transcultural phenomenon. This has formed the typical naturally curved English gardens in the gardening history. This also divided these English gardens completely from the symmetrical, geometrical French gardens. This study considers the influence and the reverberation of Shanshui hua reflected on European gardens in the European culture. The cultural exchange of European and Chinese styles in the 18th century left an impact on the European gardening style history. Finally, this study analyzes the origin of these Anglo-Chinese gardens and its content to approach it with a transcultural view as a research methodology.

  • PDF

Solder Joint Inspection Using a Neural Network and Fuzzy Rule-Based Classification Method (신경회로망과 퍼지 규칙을 이용한 인쇄회로 기판상의 납땜 형상검사)

  • Ko, Kuk-Won;Cho, Hyung-Suck;Kim, Jong-Hyeong;Kim, Sung-Kwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.710-718
    • /
    • 2000
  • In this paper we described an approach to automation of visual inspection of solder joint defects of SMC(Surface Mounted Components) on PCBs(Printed Circuit Board) by using neural network and fuzzy rule-based classification method. Inherently the surface of the solder joints is curved tiny and specular reflective it induces difficulty of taking good image of the solder joints. And the shape of the solder joints tends to greatly vary with the soldering condition and the shapes are not identical to each other even though the solder joints belong to a set of the same soldering quality. This problem makes it difficult to classify the solder joints according to their qualities. Neural network and fuzzy rule-based classification method is proposed to effi-ciently make human-like classification criteria of the solder joint shapes. The performance of the proposed approach is tested on numerous samples of commercial computer PCB boards and compared with the results of the human inspector performance and the conventional Kohonen network.

  • PDF

A Study of Non-staggered Grid Approach for Incompressible Heat and Fluid Flow Analysis (비압축성 열유동 해석을 위한 비엇갈림 격자법에 대한 연구)

  • Kim Jongtae;Kim Sang-Baik;Kim Hee-Dong;Maeng Joo-sung
    • Journal of computational fluids engineering
    • /
    • v.7 no.1
    • /
    • pp.10-19
    • /
    • 2002
  • The non-staggered(collocated) grid approach in which all the solution variables are located at the centers of control volumes is very popular for incompressible flow analyses because of its numerical efficiency on the curvilinear or unstructured grids. Rhie and Chow's paper is the first in using non-staggered grid method for SIMPLE algorithm, where pressure weighted interpolation was used to prevent decoupling of pressure and velocity. But it has been known that this non-staggered grid method has stability problems when pressure fields are nonlinear like in natural convection flows. Also Rhie-Chow scheme generates large numerical diffusion near curved walls. The cause of these unwanted problems is too large pressure damping term compared to the magnitude of face velocity. In this study the magnitude of pressure damping term of Rhie-Chow's method is limited to 1∼10% of face velocity to prevent physically unreasonable solutions. The wall pressure extrapolation which is necessary for cell-centered FVM is another source of numerical errors. Some methods are applied in a unstructured FV solver and analyzed in view of numerical accuracy. Here, two natural convection problems are solved to check the effect of the Rhie-Chow's method on numerical stability. And numerical diffusion from Rhie-Chow's method is studied by solving the inviscid flow around a circular cylinder.