• Title/Summary/Keyword: Curved Duct

Search Result 91, Processing Time 0.027 seconds

Study on the Similarity of Laminar Flows between in Orthogonally Rotating Square Duct and Stationary Curved Squared Duct (수직축을 중심으로 회전하는 직관과 정지한 곡관내에서의 층류 유동의 유사성 비교)

  • Lee, Gong-Hui;Baek, Je-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1683-1691
    • /
    • 2000
  • In this study, it is numerically revealed that the secondary flow due to the Coriolls force in a straight duct rotating about an axis perpendicular to that of the duct is analogous to that caused by the centrifugal force in a stationary curved duct. Dimensionless parameters $K_{LR}=Re/\sqrt{Ro}$ and Rossby number in a rotating straight duct were used as a set corresponding to Dean number and curvature ratio in a stationary curved duct. When the value of Rossby number and curvature ratio is large, it is shown that the flow field satisfies the `asymptotic invariance property`, that is, there are strong quantitative similarities between the two flows such as friction factors, flow patterns, and maximum axial velocity magnitudes for the same values of $K_{LR}$ and Dean number.

Numerical Study on the Similarity between the Fully Developed Turbulent Flow in an Orthogonally Rotating Square Duct and that in a Stationary Curved Square Duct (수직축을 중심으로 회전하는 직관과 정지한 곡관 내에서의 완전 발달된 난류 유동의 유사성에 관한 수치적 연구)

  • Lee, Gong-Hui;Baek, Je-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.731-740
    • /
    • 2001
  • A numerical study on the quantitative analogy between the fully developed turbulent flow in a straight square duct rotating about an axis perpendicular to that of the duct and that in a stationary curved duct of square cross-section is carried out. In order to clarify the similarity of the two flows, dimensionless parameters K(sub)TR=Re(sup)1/4/√Ro and Rossby number, Ro, in a rotating straight duct flow were used as a set corresponding to K(sub)TC=Re(sup)1/4/√λ and curvature ratio, λ, in a stationary curved duct flow so that they have the same dynamical meaning as those of the fully developed laminar flows. For the large values of Ro or λ, it is shown that the flow field satisfies the asymptotic invariance property, that is, there are strong quantitative similarities between the two flows such as flow patterns and friction factors for the same values of K(sub)TR and K(sub)TC.

A Study on the Axial Velocity and Secondary Flow Distributions of Turbulent Pulsating Flow in a Curved Duct (곡관덕트에서 난류맥동유동의 축방향 속도분포와 2차유동분포에 관한연구)

  • 손현철
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.127-133
    • /
    • 2000
  • In the present study flow characteristics of turbulent pulsating flow in a square-sectional 180。 curved duct are investigated experimentally. in order to measure axial velocity and secondary flow distributions experimental studies for air flow are conducted in a square-sectional $180^{\circ}$ curved duct by using the LDV system with the data acquisition and the processing system of the Rotating Machinery Resolver (RMR) and the PHASE software. The experiment is conducted on seven sections form the inlet(${\phi}=180^{\circ}$) at $30^{\circ}$ intervals of the duct. The results obtained from the experimentation are summarized as follows : In the axial velocity distributions of turbulent pulsating flow when the ratio of velocity amplitude(A1) is less than one there is hardly any velocity change in the section except near the wall and any change in axial velocity distribution along the phase. The secondary flow of turbulent pulsating flow has a positive value at the vend angle of $150^{\circ}$ without regard to the ratio of velocity amplitude. The dimensionless value of secondary flow becomes gradually weak and approaches zero in the region of bend angle $180^{\circ}$ without regard to the ratio of velocity amplitude.

  • PDF

An Experimental Study on Flow Characteristics of Turbulent Pulsating Flow in a Curved Duct by Using LDV (LDV에 의한 곡관덕트에서 난류맥동유동의 유동특성에 관한 실험적 연구)

  • Lee, Hong-Gu;Son, Hyeon-Cheol;Lee, Haeng-Nam;Park, Gil-Mun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1561-1568
    • /
    • 2001
  • In the present study, flow characteristics of turbulent pulsating flow in a square-sectional 180$^{\circ}$curved duct were experimentally investigated. The experimental study for air flows in a curved duct are carried out to measure axial velocity profiles, wall shear stress distributions and entrance length in a square-sectional 180$^{\circ}$curved duct by using the Laser Doppler Velocimeter(LDV) system and the data acquisition. Velocity profiles are obtained using the Rotating Machinery Resolver(RMR)and PHASE software in case of turbulent pulsating flow. Finally, it was plotted by the ORIGIN software. The experiment was conducted in seven sections from the inlet (ø = 0$^{\circ}$) to the outlet (ø=l80$^{\circ}$) at 3 0$^{\circ}$intervals of the duct.

Axial Direction Velocity and Secondary Flow Distributions of Turbulent Pulsating Flow in a Curved Duct (곡관덕트에서 난류맥동유동의 축방향 속도분포와 2차유동속도분포)

  • 손현철;이홍구;이행남;박길문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.15-23
    • /
    • 2000
  • In the present study, flow characteristics of turbulent pulsating flow in the square-sectional $180^{\circ}$curved duct are investigated experimentally. In order to measure axial direction velocity and secondary flow distributions, experimental studies for air flow are conducted in the square-sectional $180^{\circ}$curved duct by using the LDV system with the data acquisition and the processing system of the Rotating Machinery Resolver (RMR) and the PHASE software. The experiment is conducted on seven sections form the inlet($\phi=0^{\circ}$) to the outlet($\phi=180^{\circ}$) at $30^{\circ}$intervals of the duct. The results obtained from the experimentation are summarized as follows : In the axial direction velocity distributions of turbulent pulsating flow, when the ratio of velocity amplitude (A1) is less than one, there is hardly any velocity change in the section except near the wall and in axial velocity distribution along the phase. The secondary flow of turbulent pulsating flow has a positive value at the bend angle of $150^{\circ}$regardless of the ratio of velocity amplitude. The dimensionless value of secondary flow becomes gradually weak and approaches zero in the region of bend angle $180^{\circ}$without regard to the ratio of velocity amplitude.

  • PDF

Flow Characteristics of Developing Laminar Steady Flows in a Straight Duct Connected to a Square Curved Duct (곡관덕트에 연결된 정사각단면 직관덕트에서 증류정상유동의 유동장내 유동특성)

  • Sohn Hyun Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.545-553
    • /
    • 2005
  • In the present study, The characteristics of developing steady laminar flows of a straight duct connected to a $180^{\circ}$ curved duct were examined In the entrance region through experimental measurement. Flow characteristics such as shear stress distributions, pressure distributions and friction coefficient experimentally in a square cross-sectional straight duct by using the PIV system. For the PIV measurement by particles produced from mosquito coils particles. The experimental data were obtained at 9 points dividing the test sections by 400mm. Experimental results can be summarized as follows. Critical Reynolds number, $Re_{cr}$ which indicates transition from laminar steady flow to transition steady flow was 2,150. Shear stress per unit length on the wall was stronger than that in the fully developed flow region. This was attributed to the fact that shear stress and pressure loss in the curvature of a duct were increased. Pressure distributions were gradually decreased irrespective of Reynolds number In the whole test section. This trends were in a good agreement with the reference results. Pipe friction coefficient in the steady state flow region was calculate from method of least squares. The co-relationship between fiction coefficient and Reynolds number was established as follow; ${\lambda}=56/Re$.

A study on flow characteristics of laminar oscillatory flows in a square-sectional $180^{\circ}C$ curved duct (정사각단면 $180^{\circ}C$ 곡덕트에서 층류진동유동의 유동 특성에 관한 연구)

  • Park, Gil-Mun;Jo, Byeong-Gi;Bong, Tae-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.139-152
    • /
    • 1998
  • In the present study, the flow characteristics of developing laminar oscillatory flows in a square -sectional 180 deg. curved duct are investigated experimentally. The experimental study using air in a square-sectional 180 deg. curved duct is carried out to measure velocity distributions with a data acquisition and LDV (Laser Doppler Velocimetry) processing system. In this system, Rotating Machinery Resolver (RMR) and PHASE program are used to obtain the results of unsteady flows. The major flow characteristics of developing oscillatory flows are found by analyzing velocity curves, mean velocity profiles, time-averaged velocity distribution of secondary flow, wall shear stress distributions, and entrance lengths. In a lower dimensionless angular frequency, the axial velocity distribution of laminar oscillatory flow in a curved duct shows a convex shape in a central part and axial symmetry. The maximum value of wall shear stress in a lower dimensionless angular frequency is located in an outside wall, but according to increasing the dimensionless angular frequency, the maximum of wall shear stress is moved to inner wall. The entrance lengths of laminar oscillatory flows in a square-sectional 180 deg. curved duct is obtained to 90 deg. of bended angle of duct in this experimental conditions.

A Study on the Axial Velocity Profile of Developing Laminar Flows in a Straight Duct Connected to a Square Curved Duct (정사각단면 곡관덕트에 연결된 직관덕트에서 층류유동의 속도분포)

  • Sohn, Hyun-Chull;Lee, Haeng-Nam;Park, Gil-Moon;Lee, Hong-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1058-1065
    • /
    • 2004
  • In the present study, characteristics of steady state laminar flows of a straight duct connected to a 180$^{\circ}$ curved duct were examined in the entrance region through experimental and numerical analyses. For the analysis, the governing equations of laminar flows in the Cartesian coordinate system were applied. Flow characteristics such as velocity profiles, and secondary flows were investigated numerically and experimentally in a square cross-sectional straight duct by the PIV system and a CFD code(STAR CD). For the PIV measurement, working fluid produced from mosquito coils smoke. The experimental data were obtained at 9 points dividing the test sections by 400 mm. Experimental and numerical results can be summarized as follows. Critical Reynolds number, Recr which indicates transition from laminar steady flow to transition steady flow was 2,150. As Reynolds number, Re, was increased, dimensionless velocity profiles at the outer wall were increased due to the effect of the centrifugal force and the secondary flows. The intensity of a secondary flow became stronger at the inner wall rather than the outer wall regardless of Reynolds number.

Experimental Study of Three-Dimensional Turbulent Flow in a $90^{\circ}C$ Rectanglar Cross Sectional Strongly Curved Duct (직사각형 단면을 갖는 $90^{\circ}C$ 급곡관 내의 3차원 난류유동에 관한 실험적 연구)

  • 맹주성;류명석;양시영;장용준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.262-273
    • /
    • 1991
  • In the present study, the steady, incompressible, isothermal, developing flow in a 90.deg. rectangular cross sectional strongly curved duct with aspect ratio 1:1.5 and Reynolds number of 9.4*10$^{4}$ has been investigated. Measurements of components of mean velocities, pressures, and corresponding components of the Reynolds stress tensor are obtained with a hot-wire anemometer and pitot tube. In general, flow in a curved duct is characterized by the secondary vortices which are driven mainly by centrifugal force-radial pressure gradient imbalance, and the stress field stabilizing effects near the convex wall and destablizing effects close to the concave wall. It was found that the secondary mean velocities attain values up to 39% of the bulk velocity and are largely responsible for the convections of Reynolds stress in the cross stream plane. Therefor upstream of the bend the Reynolds stress are low. Corresponding to the small boundary layer thickness. At successive planes, large values of Reynolds stress were observed near the concave surface and the side wall.

NUMERICAL SIMULATION OF INCOMPRESSIBLE LAMINAR ENTRY FLOWS IN A SQUARE DUCT OF $90^{\circ}$ BEND BY UNSTRUCTURED CELL-CENTERED METHOD (비정렬 셀 중심 방법에 의한 정사각형 단면을 갖는 $90^{\circ}$ 곡관 층류유동의 수치해석)

  • Myong H. K.;Kim J. E.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.81-85
    • /
    • 2005
  • Three-dimensional steady incompressible laminar entry flows in a square duct of $90^{\circ}$ bend are numerically simulated by a new solution code(PowerCFD) using unstructured cell-centered method. Solutions are obtained with three unstructured grid types of hexahedron, prism and hybrid at a Reynolds number, based on the hydraulic diameter and bulk velocity, of 790. Interesting features of the flow are presented in detail. Detailed comparisons between the computed solutions and the available experimental data are given mainly for the velocity distributions at cross-sections in a $90^{\circ}$ bend of a square duct with fully-developed entry flows. It is found that the code is capable of producing the nature of laminar flow in curved square duct with no grid type dependency.

  • PDF