• Title/Summary/Keyword: Curved Beam Bending

Search Result 60, Processing Time 0.027 seconds

Out-of-Plane Buckling Analysis of Curved Beams Using DQM (미분구적법(DQM)을 이용한 곡선보의 외평면 좌굴해석)

  • Kang, Ki-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.189-195
    • /
    • 2002
  • The differential quadrature method (DQM) is applied to computation of the eigenvalues of out-of-plane bucking of curved beams. Critical moments including the effect of radial stresses are calculated for a single-span wide-flange beam subjected to equal and opposite in-plane bending moments with various end conditions, and opening angles. Results are compared with existing exact solutions where available. The differential quadrature method gives good accuracy even when only a limited number of grid points is used. New results are given for two sets of boundary conditions not previously considered for this problem: clamped-clamped and clamped-simply supported ends.

Development of Design Formulas for Pipe Loops Used in Ships Considering the Structural Characteristics of Curved Portions (곡선부의 구조 특성을 고려한 선박용 파이프 루프 설계식 개발)

  • Park, Chi-Mo;Bae, Byoung-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.87-93
    • /
    • 2012
  • Many longitudinally-arranged pipes in ships are equipped with loops as a measure to reduce stresses caused by displacement loads conveyed from the hull girder bending and/or thermal loads of carried fluid of non-ambient temperature. But as the loops have some negative effects such as causing extra manufacturing cost and occupying extra space, the number and the dimensions of the loops need to be minimized. In the meanwhile, a design formula for pipe loops has been developed by modeling them as a spring element of which stresses and axial stiffness are calculated based on the beam theory. But as the beam theory turns out to be inappropriate to deal with the complex structural behavior in the curved corner portion of the loop, this paper aims at improving the previously developed design formula by adopting correction factors which can allow for the gap between the results of beam theory and a more accurate analysis. This paper adopts a finite element analysis with two-dimensional shell elements with some validation work for it. The paper ends with a sample application of the proposed formulas showing their accuracy and efficiency.

In-plane Vibration Analysis of Rotating Cantilever Curved Beams

  • Zhang, Guang-Hui;Liu, Zhan Sheng;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1045-1050
    • /
    • 2007
  • Equations of motion of rotating cantilever curved beams are derived based on a dynamic modeling method developed in this paper. The Kane's method is employed to derive the equations of motion. Different from the classical linear modeling method which employs two cylindrical deformation variables, the present modeling method employs a non-cylindrical variable along with a cylindrical variable to describe the elastic deformation. The derived equations (governing the stretching and the bending motions) are coupled but linear. So they can be directly used for the vibration analysis. The coupling effect between the stretching and the bending motions which could not be considered in the conventional modeling method is considered in this modeling method. The natural frequencies of the rotating curved beams versus the rotating speed are calculated for various radii of curvature and hub radius ratios.

  • PDF

Live Load Distribution of Prestressed Concrete Girder Bridge with Curved Slab

  • Park Sun-Kyu;Kim Kwang-Soo;Kim Jin-Ho;Choi Jung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.709-717
    • /
    • 2004
  • The existing AASHTO Standard Specification have some inadequacies in expressing wheel load distribution of bridge which has specific shape of curved bridge instead of straight bridge. Thus, this research presented the finite element analysis and modelling technique of prestressed concrete girder bridge having curved slab and the expression of wheel load distribution was suggested as the ratio of bending moment utilizing the result of finite element analysis of prestressed concrete girder bridge having cowed slab. The considered parameter of girder distribution expression is the curvature of slab, span length, girder space, cross beam space and number of lanes. Though the suggested girder distribution expression is generally underestimated below AASHTO Standard Specification, once the curvature of slab increases, the suggested expression gets larger than AASHTO LRFD Standard Specification.

Geometrically exact initially curved Kirchhoff's planar elasto-plastic beam

  • Imamovic, Ismar;Ibrahimbegovic, Adnan;Hajdo, Emina
    • Coupled systems mechanics
    • /
    • v.8 no.6
    • /
    • pp.537-553
    • /
    • 2019
  • In this paper we present geometrically exact Kirchhoff's initially curved planar beam model. The theoretical formulation of the proposed model is based upon Reissner's geometrically exact beam formulation presented in classical works as a starting point, but with imposed Kirchhoff's constraint in the rotated strain measure. Such constraint imposes that shear deformation becomes negligible, and as a result, curvature depends on the second derivative of displacements. The constitutive law is plasticity with linear hardening, defined separately for axial and bending response. We construct discrete approximation by using Hermite's polynomials, for both position vector and displacements, and present the finite element arrays and details of numerical implementation. Several numerical examples are presented in order to illustrate an excellent performance of the proposed beam model.

Deformation estimation of plane-curved structures using the NURBS-based inverse finite element method

  • Runzhou You;Liang Ren;Tinghua Yi ;Hongnan Li
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.83-94
    • /
    • 2023
  • An accurate and highly efficient inverse element labelled iPCB is developed based on the inverse finite element method (iFEM) for real-time shape estimation of plane-curved structures (such as arch bridges) utilizing onboard strain data. This inverse problem, named shape sensing, is vital for the design of smart structures and structural health monitoring (SHM) procedures. The iPCB formulation is defined based on a least-squares variational principle that employs curved Timoshenko beam theory as its baseline. The accurate strain-displacement relationship considering tension-bending coupling is used to establish theoretical and measured section strains. The displacement fields of the isoparametric element iPCB are interpolated utilizing nonuniform rational B-spline (NURBS) basis functions, enabling exact geometric modelling even with a very coarse mesh density. The present formulation is completely free from membrane and shear locking. Numerical validation examples for different curved structures subjected to different loading conditions have been performed and have demonstrated the excellent prediction capability of iPCBs. The present formulation has also been shown to be practical and robust since relatively accurate predictions can be obtained even omitting the shear deformation contributions and considering polluted strain measures. The current element offers a promising tool for real-time shape estimation of plane-curved structures.

Mechanics-Based Determination of the Center Roller Displacement in Three-Roll Bending for Smoothly Curved Rectangular Plates

  • Shin, Jong-Gye;Lee, Jang-Hyun;Kim, You-Il;Hyunjune Yim
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1655-1663
    • /
    • 2001
  • The objective of this paper is to develop a logical procedure to determine the center roller displacement, in the three-roll bending process, which is required in the fabrication of curved rectangular plates with a desired curvature. To this end, the mechanics of the process was analyzed by both analytical and finite element approaches. Comparisons of the results reveal that a simple analytical procedure, based on the beam theory, yields a reasonably accurate relationship between the center roller displacement and residual curvature. With further development and refinement, the proposed in this work has great premise for practical application, particularly automation of the process.

  • PDF

In-Plane Buckling Analysis of Curved Beams Using DQM (미분구적법(DQM)을 이용한 곡선보의 내평면 좌굴해석)

  • Kang, Ki-Jun;Kim, Young-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.2858-2864
    • /
    • 2012
  • The differential quadrature method (DQM) is applied to computation of the eigenvalues of in-plane buckling of the curved beams. Critical moments and loads are calculated for the beam subjected to equal and opposite bending moments and uniformly distributed radial loads with various end conditions and opening angles. Results are compared with existing exact solutions where available. The DQM gives good accuracy even when only a limited number of grid points is used. More results are given for two sets of boundary conditions not considered by previous investigators for in-plane buckling: clamped-clamped and simply supported-clamped ends.

Free vibration characteristics of horizontally curved composite plate girder bridges

  • Wong, M.Y.;Shanmugam, N.E.;Osman, S.A.
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.297-315
    • /
    • 2010
  • This paper is concerned with free vibration characteristics and natural frequency of horizontally curved composite plate girder bridges. Three-dimensional finite element models are developed for the girders using the software package LUSAS and analyses carried out on the models. The validity of the finite element models is first established through comparison with the corresponding results published by other researchers. Studies are then carried out to investigate the effects of total number of girders, number of cross-frames and curvature on the free vibration response of horizontally curved composite plate girder bridges. The results confirm the fact that bending modes are always coupled with torsional modes for horizontally curved bridge girder systems. The results show that the first bending mode is influenced by composite action between the concrete deck and steel beam at low subtended angle but, on the girders with larger subtended angle at the centre of curvature such influence is non-existence. The increase in the number of girders results in higher natural frequency but at a decreasing rate. The in-plane modes viz. longitudinal and arching modes are significantly influenced by composite action and number of girders. If no composite action is taken into account the number of girders has no significant effect for the in-plane modes.

Analysis of Ship Hull Plate Bending By Roll Bending Machine (Roll bending machine에 의한 선체외판의 곡면가공 해석)

  • Kim, You-Il;Shin, Jong-Gye;Lee, Jang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.142-149
    • /
    • 1996
  • Pyramid type three roll bending machines are widely used in roll-bending process to produce singly curved plate. In forming singly curved plate, controlling the vertical displacement of the center roller is most important to acquire the shape required and automation system of the process. In this paper roller bending process is modeled as an elastic-plastic phenomenon and analyzed using beam theory and finite element method. In finite element analysis the workpiece is modeled by using beam elements and plane strain elements respectively. Through the analyses vertical center roller displacement is obtained to get constant curvature distribution along arc length. The relationship between center roller displacement and curvature in steady state as well as residual stress and strain along plate thickness direction are calculated through finite element analysis.

  • PDF