• 제목/요약/키워드: Curved Beam

검색결과 315건 처리시간 0.03초

Size-dependent vibration and electro-magneto-elastic bending responses of sandwich piezomagnetic curved nanobeams

  • Arefi, Mohammed;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • 제29권5호
    • /
    • pp.579-590
    • /
    • 2018
  • Size-dependent free vibration responses and magneto-electro-elastic bending results of a three layers piezomagnetic curved beam rest on Pasternak's foundation are presented in this paper. The governing equations of motion are derived based on first-order shear deformation theory and nonlocal piezo-elasticity theory. The curved beam is containing a nanocore and two piezomagnetic face-sheets. The piezomagnetic layers are imposed to applied electric and magnetic potentials and transverse uniform loadings. The analytical results are presented for simply-supported curved beam to study influence of some parameters on vibration and bending results. The important parameters are spring and shear parameters of foundation, applied electric and magnetic potentials, nonlocal parameter and radius of curvature of curved beam. It is concluded that the increase in radius of curvature tends to an increase in the stiffness of curved beam and consequently natural frequencies increase and bending results decrease. In addition, it is concluded that with increase of nonlocal parameter of curved beam, the stiffness of structure is decreased that leads to decrease of natural frequency and increase of bending results.

진동 및 처짐해석을 위한 개선된 곡선보이론 (Improved Curved Beam Theory for Vibration and Deflection Analyses)

  • 김남일;최정호
    • 한국공간구조학회논문집
    • /
    • 제10권4호
    • /
    • pp.123-132
    • /
    • 2010
  • 본 연구에서는 비대칭 단면을 갖는 박벽 곡선보의 자유진동 및 처짐해석을 위하여 박벽단면을 갖는 기존의 곡선보 이론의 단점을 보완하고자 도심-전단중심 정식화에 근거한 개선된 곡선보 이론을 제시한다. 변위장은 각각 도심과 전단중심에서 정의한 변위파라미터를 도입하여 나타내었으며 곡선보의 두께-곡률 효과와 회전관성효과를 고려한 개선된 변형에너지와 운동에너지를 엄밀하게 유도하였다. 본 연구의 타당성과 정확성을 증명하기 위하여 Hermitian 곡선보요소를 사용한 유한요소해석을 수행하였으며 해석 결과들을 도심 정식화에 의하여 산정한 결과, 선행 연구자 결과 및 ABAQUS의 쉘요소를 이용한 결과와 비교하였다.

  • PDF

The analytical solution for buckling of curved sandwich beams with a transversely flexible core subjected to uniform load

  • Poortabib, A.;Maghsoudi, M.
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.323-349
    • /
    • 2014
  • In this paper, linear buckling analysis of a curved sandwich beam with a flexible core is investigated. Derivation of equations for face sheets is accomplished via the classical theory of curved beam, whereas for the flexible core, the elasticity equations in polar coordinates are implemented. Employing the von-Karman type geometrical non-linearity in strain-displacement relations, nonlinear governing equations are resulted. Linear pre-buckling analysis is performed neglecting the rotation effects in pre-buckling state. Stability equations are concluded based on the adjacent equilibrium criterion. Considering the movable simply supported type of boundary conditions, suitable trigonometric solutions are adopted which satisfy the assumed edge conditions. The critical uniform load of the beam is obtained as a closed-form expression. Numerical results cover the effects of various parameters on the critical buckling load of the curved beam. It is shown that, face thickness, core thickness, core module, fiber angle of faces, stacking sequence of faces and openin angle of the beam all affect greatly on the buckling pressure of the beam and its buckled shape.

Higher order free vibration of sandwich curved beams with a functionally graded core

  • Fard, K. Malekzadeh
    • Structural Engineering and Mechanics
    • /
    • 제49권5호
    • /
    • pp.537-554
    • /
    • 2014
  • In this paper, free vibration of a sandwich curved beam with a functionally graded (FG) core was investigated. Closed-form formulations of two-dimensional (2D) refined higher order beam theory (RHOBT) without neglecting the amount of z/R was derived and used. The present RHOBT analysis incorporated a trapezoidal shape factor that arose due to the fact that stresses through the beam thickness were integrated over a curved surface. The solutions presented herein were compared with the available numerical and analytical solutions in the related literature and excellent agreement was obtained. Effects of some dimensionless parameters on the structural response were investigated to show their effects on fundamental natural frequency of the curved beam. In all the cases, variations of the material constant number were calculated and presented. Effect of changing ratio of core to beam thickness on the fundamental natural frequency depended on the amount of the material constant number.

전단효과를 고려한 곡선보 요소 개발 (Development of Curved Beam Element with Shear Effect)

  • 이석순;구정서;최진민
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2535-2542
    • /
    • 1993
  • Two-noded curved beam elements, CMLC (field-consistent membrane and linear curvature) and IMLC(field-inconsistent membrane and linear curvature) are developed on the basis of Timoshenko's beam theory and curvilinear coordinate. The curved beam element is developed by the separation of the radial deflection into the bending deflection. In the CMLC element, field-consistent axial strain interpolation is adapted for removing the membrane locking. The CMLC element shows the rapid and stable convergence on the wide range of curved beam radius to thickness. The field-consistent axial strain and the separation of radial deformation produces the most efficient linear element possible.

변형률에 근거한 2-절점 곡선보 요소 (A 2-Node Strain Based Curved Beam Element)

  • 유하상;신효철
    • 대한기계학회논문집A
    • /
    • 제20권8호
    • /
    • pp.2540-2545
    • /
    • 1996
  • It is well known that in typical displacement-based curved beam elements, the stiffness matrix is overestimated and as a result displacement predictions show gross error for the thin beam case. In this paper, a stain based curved beam element with 2 nodes is formulated based on shallow beam geometry. At the element level, the curvature and membrane strain fields are approximated independently and the displacement fields are obtained by integrating the strain fields. Three test problems are given to demonstrate the numerical performance of the element. Analysis results obtained reveal that the element is free for locking and very effectively applicable to deeply as well as shallowly curved beams.

Free vibration and elastic analysis of shear-deformable non-symmetric thin-walled curved beams: A centroid-shear center formulation

  • Kim, Nam-Il;Kim, Moon-Young
    • Structural Engineering and Mechanics
    • /
    • 제21권1호
    • /
    • pp.19-33
    • /
    • 2005
  • An improved shear deformable thin-walled curved beam theory to overcome the drawback of currently available beam theories is newly proposed for the spatially coupled free vibration and elastic analysis. For this, the displacement field considering the shear deformation effects is presented by introducing displacement parameters defined at the centroid and shear center axes. Next the elastic strain and kinetic energies considering the shear effects due to the shear forces and the restrained warping torsion are rigorously derived. Then the equilibrium equations are consistently derived for curved beams with non-symmetric thin-walled sections. It should be noticed that this formulation can be easily reduced to the warping-free beam theory by simply putting the sectional properties associated with warping to zero for curved beams with L- or T-shaped sections. Finally in order to illustrate the validity and the accuracy of this study, finite element solutions using the isoparametric curved beam elements are presented and compared with those in available references and ABAQUS's shell elements.

모우드 해석법을 이용한 캔틸레버 곡선보의 동적해석 (Dynamic Analysis of Cantilevered Curved Beam using Model Analysis Method)

  • 김영문;유기표
    • 한국공간구조학회논문집
    • /
    • 제7권1호
    • /
    • pp.55-62
    • /
    • 2007
  • 곡선보의 고유진동수를 측정하기 우하여 이론적인 해석과 실험 및 유한요소법해석을 실시하였다. 본 논문에서는 모우드해석을 위한 실험에서 얻어지는 결과로부터 곡선보의 동특성의 하나인 고유진동수를 구하였다 먼저, 이론식을 통해 구조물의 동특성을 파악하고, 유한요소해석과 실험에 의한 결과를 비교 검토하여 구조물의 동적해석에 있어서 모우드해석법의 적용성을 보였다.

  • PDF

On propagation of elastic waves in an embedded sigmoid functionally graded curved beam

  • Zhou, Linyun;Moradi, Zohre;Al-Tamimi, Haneen M.;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • 제44권1호
    • /
    • pp.17-31
    • /
    • 2022
  • This investigation studies the characteristics of wave dispersion in sigmoid functionally graded (SFG) curved beams lying on an elastic substrate for the first time. Homogenization process was performed with the help of sigmoid function and two power laws. Moreover, various materials such as Zirconia, Alumina, Monel and Nickel steel were explored as curved beams materials. In addition, curved beams were rested on an elastic substrate which was modelled based on Winkler-Pasternak foundation. The SFG curved beams' governing equations were derived according to Euler-Bernoulli curved beam theory which is known as classic beam theory and Hamilton's principle. The resulted governing equations were solved via an analytical method. In order to validate the utilized method, the obtained outcomes were compared with other researches. Finally, the influences of various parameters, including wave number, opening angle, gradient index, Winkler coefficient and Pasternak coefficient were evaluated and indicated in the form of diagrams.

Curved beam through matrices associated with support conditions

  • Gimena, Faustino N.;Gonzaga, Pedro;Valdenebro, Jose V.;Goni, Mikel;Reyes-Rubiano, Lorena S.
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.395-412
    • /
    • 2020
  • In this article, the values of internal force and deformation of a curved beam under any action with the firm or elastic supports are determined by using structural matrices. The article presents the general differential formulation of a curved beam in global coordinates, which is solved in an orderly manner using simple integrals, thus obtaining the transfer matrix expression. The matrix expression of rigidity is obtained through reordering operations on the transfer notation. The support conditions, firm or elastic, provide twelve equations. The objective of this article is the construction of the algebraic system of order twenty-four, twelve transfer equations and twelve support equations, which relates the values of internal force and deformation associated with the two ends of the directrix of the curved beam. This final algebraic system, expressed in matrix form, is divided into two subsystems: twelve algebraic equations of internal force and twelve algebraic equations of deformation. The internal force and deformation values for any point in the curved beam directrix are determined from these values in the initial position. The five examples presented show how to apply the matrix procedures developed in this article, whether they are curved beams with the firm or elastic support.