• Title/Summary/Keyword: Curve running performance

Search Result 34, Processing Time 0.035 seconds

Wheel flange Wear Reduction of Rolling Stock (철도차량의 차륜마모 저감)

  • 허현무;이찬우
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.143-150
    • /
    • 2000
  • Like conventional railways, improving running performance of vehicle in curve is more effective than improving maximum speed to reduce traveling time. But some vehicles have problems concerning running performance in cure because of insufficient study for our conventional railway characteristics. So, these problems brought about increasement of maintenance cost. This study was started to deliberate several plans to solve problems concerning running performance in curve. Some modifications of primary suspension and tests were carried out to improve curve negotiation. Here, we describe some results.

  • PDF

Evaluation of Curving Performance and Running Safety of New High-Power Electric Locomotive (신형 고출력 전기기관차의 곡선추종성 및 주행안전성 평가)

  • Ham, Young Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.827-832
    • /
    • 2013
  • In this study, curve responsiveness was assessed based on the lateral force and running safety was evaluated based on the wheel unloading ratio and derailment coefficient, which is the ratio of the wheel load and the lateral force. The evaluation of the curving performance and running safety of the new high-power electric locomotive showed that the derailment coefficient appeared higher when the wheel-set was set to the front of the train instead of being placed backward, and the maximum value of the derailment coefficient was recorded as 0.572 on the Gyeongbu line. Furthermore, the lateral force increased in curved sections, and it appeared to be proportional to the curve radius. Meanwhile, a maximum axis lateral force of 77.6 kN was recorded on the Taebaek line, and the wheel unloading ratio was 47.6% on the Yeongdong line. Finally, the running safety at the maximum speed as well as the through-curve performance of the curve radius satisfied the required standards.

A Study on the Analysis on Running Safety of Railway Vehicle According to The Change of Suspension Stiffness (현가장치 강성변화에 따른 주행안전성 해석에 관한 연구)

  • Hyun, Seok;Eom, Beom-Gyu;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1622-1627
    • /
    • 2008
  • A suspension is a core part, determining running stability and riding quality of vehicles and its stiffness is essential parameters in the process of vehicle designing. Suspension stiffness shall be adjusted to meet requirements of running stability and curve running performance, as adding stiffness to primary suspension for running stability in high-speed running results running performance degradation in curved track. The purpose of the report lies in utilization of usable data for optimization of suspension via analyzing running performance through changing stiffness of railway vehicle suspension.

  • PDF

A Study on the Optimization of Suspension Characteristics for Improving Running Safety of Railway Vehicle (철도차량 주행안전성 향상을 위한 현가장치 최적화 연구)

  • Lee, Young-Yeob;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.909-914
    • /
    • 2009
  • A suspension is the most prior apparatus to decide vehicle's running safety and ride comfort, also the suspension stiffness is the most important parameter for the designing of the vehicle. Providing the strong stiffness with the primary suspension in order to improve the running safety with high speed, but it causes a problem with a curve running performance of a railway vehicle. Therefore, many studies deal with the optimal value of suspension stiffness. In this paper, we aim to optimize the suspension system to improve running safety by varying stiffness values of railway vehicle suspension. We have proceeded an analysis by design variables which are position, length, width, stiffness and damping coefficients of primary and secondary suspension to optimize the suspension characteristics. As a result of the optimization, we verified that the derailment coefficients of inside and outside of wheel are decreased in comparison with initial model.

Integrated CAD/CAE System for Planing Hull Form Design (활주형 선박의 선형설계를 위한 통합 CAD/CAE 시스템)

  • 김태윤;김동준
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.298-304
    • /
    • 2003
  • In this paper a free-form hull design program and performance prediction program for planing boat is introduced. This program enables the designer to do complex geometric hull shape design on a personal computer and accurately to predict power requirements for a given loading and velocity. For a free form design, Bezier curve model is adopted as a basic representation tool of curves and surfaces, and this program has versatile functions to do fairing jobs with a convenient graphical user interface. After creating a hull form the geometric data is provided in a manner compatible with a variety of analysis tools including 'Motion Analysis(by Zarnick)' for prediction of motion characteristics in regular waves, 'Running Attitude (by Savitsky)' for prediction of the running attitude and required power.

A Study on the Wheel Wear of High Speed Train Running on the Conventional Line (경부고속열차의 기존선 주행시 차륜마멸특성에 관한 연구)

  • 강부병;이희성
    • Tribology and Lubricants
    • /
    • v.19 no.4
    • /
    • pp.187-194
    • /
    • 2003
  • This paper describes the characteristics of wheel wear of high speed train running on the conventional line. Conventional line has many curved tracks that cause severe wheel flange wear. The influences of lubrication, cant deficiency, curve radius on wheel wear are also described considering the operation performance of the highspeed trainset. A method of calculation using contact patch work model is presented for determination of the evolution by wear of railway wheels.

Development of a Interface Structure of Bogie and Carbody in Mountain Tram running on sharp Curves (급곡선 급경사 운행 산악트램의 대차 및 차체 연결 구조 개발)

  • Seo, Sung-il;Mun, Hyung-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.275-282
    • /
    • 2018
  • Mountain trams are an environmental-friendly transportation system that run wirelessly on an embedded track constructed on previous mountain roads, and can run despite the frozen road. On the other hand, there is some difficulty on sharp and steep tracks. In this study, after possible technical problems were defined in mountain trams running on a sharp and steep track, the design solutions for the interface structure of bogie and carbody were proposed. In addition, a prototype was made and its performance was tested to verify the solutions. Because the difference in the distance of the inner and outer rails on a sharp curve is severe enough to interrupt running, independent rotating wheels with different angular speeds were developed and applied. To prevent derailment due to the large attack angle and lateral force caused by the previous vehicle of 2bogie-and-1carbody on the sharp curve, a vehicle with 1bogie-and-1carbody was designed and applied. A prototype vehicle of 1bogie-and-1carbody with independent rotating wheels was made to improve the performance during the test running on a small track. A coupler was designed to absorb the large rotations of 3 degrees-of-freedom between the carbodies of a mountain tram running on the steep curved track. After a small scale prototype was made, the performance was verified by a function test.

Verifying of steering performance of the steering bogie (조향대차의 곡선선로 주행시 조향성능 검토)

  • Kim, Jung-Ha;Yang, Hee-Joo;Ahn, Jae-Kwang
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1069-1073
    • /
    • 2011
  • When the train is running on the small curved line, there would be severe contact between the rail and wheels, which cause noise and vibration as well as abnormal wear on the rail and the wheels. In order to solve these problems, the steering bogie has been developed. To verify steering performance of the steering bogie, steering angles of two trains, one is the advanced EMU with the steering bogie, another is a conventional EMU with the conventional bogie, were measured while running on the small curve. this comparing test shows that the steering bogie has much higher steering performance than the conventional bogie on the same curved line. To verify more performance data of the steering bogie, further testing and monitoring will be done with the advanced EMU in the test track.

  • PDF

Manufacturing and Performance Test for Bogie System of Urban Maglev (도시형 자기부상열차의 주행장치시스템 제작 및 성능 시험)

  • Yu, Young-Don;Lee, Nam-Jin;Kang, Kwang-Ho;Lee, Won-Sang;Han, Hyung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.590-596
    • /
    • 2010
  • Maglev vehicles levitated and propelled by electromagnet as non-contact between vehicle and guide rail is environmentally friendly transport system which have many advantages like ride comfort and guide way construction costs. As a goal of commercial operation at Incheon International Airport in 2012, development of vehicle is underway and proto-vehicle is test running at KIMM. The maglev bogie system of proto-vehicle, like railway vehicle, has functions to support weight of vehicle, transfer force of brake and propulsion and improve ride comfort through insulation of vibration and improve curve negotiation capability. The main components of a bogie are two modules consisted of electromagnetic, frame and linear motor, two tie beams to connect two modules and steering system to improve curve negotiation capability. The purpose of this paper is to describe general specification, structure, manufacturing process, performance testing, ride comfort of proto-vehicle and bogie system.

  • PDF

Influence of the Speeds on the Curve Squeal Noise of Railway Vehicles (철도차량의 곡선부 스킬 소음에 대한 속도의 영향)

  • Lee, Chan-Woo;Kim, Jae-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.572-577
    • /
    • 2011
  • Curve squealing of inter-city railway vehicle is a noise with high acoustic pressure and rather narrow frequency spectra. This noise turns out to be very annoying for the people living in the neighborhood of locations and the passenger in railway vehicle where this phenomenon occurs. Squealing is caused by a self-exited stick-slip oscillation in the wheel-rail contact. Curve squeal noise of railway vehicles that passed by a factor of the speed limit, so to overcome in order to improve running performance is one of the largest technology. In the present paper, characteristic of squeal noise behavior at the Hanvit-200 tilting train test-site. Curve squealing of railway wheels/rail contact occurs in R400~ R800 curves with a frequency range of about 4~11 kHz. If the curve is less than the radius of wheel frail contact due to |left-right| noise level difference (dBA) shows a significant effect of squeal noise were more likely.