• Title/Summary/Keyword: Curve Track

Search Result 184, Processing Time 0.032 seconds

A Study on the Effectiveness and Improvement of Simulation Training for Apprentice Officers

  • Lee, Myoung-ki;Park, Young-Soo;Ha, Weon-Jae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.311-318
    • /
    • 2018
  • In accordance with the stipulations of the STCW Convention, simulation training has been enforced in order to develop practical skills so as to prevent accidents by predetermining the risks in special marine environments. Simulation training is a useful way to acquire navigation abilities, and can continuously measure the ability of a trainee by applying an appropriate evaluation. However, the result of training is evaluated by the instructor's subjective judgment without quantitative criteria. Therefore, this study aims to quantitatively evaluate the effectiveness of simulation training. For this purpose, evaluation items were derived by analyzing legal standards, earlier studies, and the current status of MET institutions. The simulations were then performed three times in the same scenarios and analyzed the results. As a result, it has been shown that the objectively analyzed ability to keep the route and to make safe passage with other vessel, as well as subjectively evaluated ability by the apprentice officer has been improved as training progressed. Through the evaluation of simulation training results, it can be derived that simulation education needs supplementation, and can be provided as a basic form of data to quantify the evaluation results of the simulation training in the future.

A Study on the Control Method for the Tool Path of Aspherical Surface Grinding and Polishing (비구면 연삭 및 연마를 위한 공구 경로 제어에 관한 연구)

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.113-120
    • /
    • 2006
  • This paper proposed the control algorithm fur aspheric surface grinding and was verified by the experiment. The functions of the algorithm were simultaneous control of the position and interpolation of the aspheric curve. The non-linear formula of the tool position was derived from the aspheric equations and the shape of the tool. The function was partitioned by an certain interval and the control parameters were calculated at each control section. The movement in a session was interpolated with acceleration and velocity. The position error was feed-backed by rotary encorder. The concept of feedback algorithm was correcting position error by increasing or decreasing the speed. In the experiment, two-axis machine was controlled to track the aspheric surface by the proposed algorithm. The effect of the control and process parameters was monitored. The result showed that the maximum tracking error was under sub-micro level for the concave and convex surfaces.

A Study on the Tribological Characteristics of a Frying Pan Coated with PTFE and Nano-Diamond (나노다이아몬드가 첨가된 프라이팬 불소수지코팅의 Tribological 특성 연구)

  • Lee, Jin-Ho;Kim, Hyun-Soo;Yoon, Han-Ki;Kim, Tae-Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.99-104
    • /
    • 2009
  • PTFE has good mechanical and chemical stability at a wide range of temperatures and demonstrates a low friction coefficient value. PTFE is being used for self-lubricating parts in industry. But it shows a high wear rate. Thus, PTFE and nano-diamond powder were mixed into a composite and the wear properties of a PTFE coating layer on Al6061 was investigated. A ball-on-disk type of wear tester was used under a dry condition and different temperatures of oil. After the wear test, the wear track wasexamined by optical microscope. The PTFE-diamond showed the lowest friction coefficient (0.02) of all the lubricants in the experiments. The friction coefficient was shown to be directly related to the diamond powder in the PTFE coating. Adhesion estimations were performed by a scratch test, which is mainly used for coatings. The critical load between the coating and substrate was defined through analyses of the friction load, normal load curve, and acoustic emissions, along with optical microscope observations. The scratch test results showed that an import item (SWISS) gave the highest critical load values.

Improvement of the Steering Feel of an Electric Power Steering System by Torque Map Modification

  • Lee Man Hyung;Ha Seung Ki;Choi Ju Yong;Yoon Kang Sup
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.792-801
    • /
    • 2005
  • This paper discusses a dc motor equipped electric power steering (EPS) system and demonstrates its advantages over a typical hydraulic power steering (HPS) system. The tire-road interaction torque at the steering tires is calculated using the 2 d.o.f. bicycle model, in other words by using a single-track model, which was verified with the J-turn test of a real vehicle. Because the detail parameters of a steering system are not easily acquired, a simple system is modeled here. In previous EPS systems, the assisting torque for the measured driving torque is developed as a boost curve similar to that of the HPS system. To improve steering stiffness and return-ability of the steering system, a third-order polynomial as a torque map is introduced and modified within the preferred driving torques researched by Bertollini. Using the torque map modification sufficiently improves the EPS system.

Optimal Current Detect MPPT Control of PV System for Robust with Environment Changing (환경변화에 강인한 태양광 발전의 최적전류 MPPT 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.47-58
    • /
    • 2011
  • This paper proposes the optimal current detect(OCD) maximum power point tracking(MPPT) control of photovoltaic(PV) system for robust with environment changing. The output characteristics of the solar cell is a nonlinear and affected by a temperature, the solar radiation and temperature. Conventional MPPT control methods are tracked the maximum power point by constant incremental value. So these methods are slow the response speed and generated the vibration in steady state and cannot track the MPP in environment condition changing. And power loss is generated because of the self-excitation vibration in MPP region. To solve this problem, this paper proposes the novel control algorithm. Proposed algorithm is detected the optimal current in two control region using the output power and current curve. Detected current is used the converter switching for tracking the MPP. Proposed algorithm is compared output power error to conventional algorithm with radiation and temperature changing. In addition, the validity of the algorithm is proved through the output error response characteristics.

Observation of a 2016 Ganymede stellar occultation event with the SOAO 0.6m telescope

  • Hinse, Tobias Cornelius;D'Aversa, Emiliano;Oliva, Fabrizio;Sindoni, Giuseppe
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.83.3-84
    • /
    • 2017
  • On 2016 April $13^{th}$ the Jovian satellite Ganymede occulted a $7^{th}$ magnitude star. The predicted occultation track (occultation shadow) crossed the Northern Pacific Ocean, Japan, and South Korea. Hence, it was a very favorable event due to the star brightness in order to be accessible for small-aperture telescopes as well. While no other similar event is expected for the next 10 years, only two occultation events are reported in the literature in the past, from Earth in 1972 and from Voyager, in large disagreement in respect to the atmospheric detection. However, evidence of an exosphere around Ganymede was inferred through H Lyman alpha emission detected by Galileo UVS, through HST/GHRS detection of far-UV atomic O airglow emissions, signature of dissociated molecular oxygen. We organized a short-notice international coordinated occultation monitoring network with the aim to search for a signature of Ganymede's exosphere in the occultation light-curve by using facilities on Mauna Kea (NASA-IRTF) and Sobaeksan Optical Astronomy Observatory (SOAO) in South Korea.

  • PDF

Maximum Velocity Trajectory Planning for Mobile Robots Considering Wheel Velocity Limit (이동로봇의 바퀴 속도 제한을 고려한 최대 속도궤적 생성 방법)

  • Yang, Gil Jin;Choi, Byoung Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.471-476
    • /
    • 2015
  • This paper presents a maximum velocity trajectory planning algorithm for differential mobile robots with wheel velocity constraint to cope with physical limits in the joint space for two-wheeled mobile robots (TMR). In previous research, the convolution operator was able to generate a central velocity that deals with the physical constraints of a mobile robot while considering the heading angles along a smooth curve in terms of time-dependent parameter. However, the velocity could not track the predefined path. An algorithm is proposed to compensate an error that occurs between the actual and driven distance by the velocity of the center of a TMR within a sampling time. The velocity commands in Cartesian space are also converted to actuator commands to drive two wheels. In the case that the actuator commands exceed the maximum velocity the trajectory is redeveloped with the compensated center velocity. The new center velocity is obtained according to the curvature of the path to provide a maximum allowable velocity meaning a time-optimal trajectory. The effectiveness of the algorithm is shown through numerical examples.

The Design and Construction of a High Efficiency Satellite Electrical Power Supply System

  • Mousavi, Navid
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.666-674
    • /
    • 2016
  • In this paper, a high efficiency satellite electrical power supply system is proposed. The increased efficiency of the power supply system allows for downscaling of the solar array and battery weight, which are among the most important satellite design considerations. The satellite power supply system comprises two units, namely a generation unit and a storage unit. To increase the efficiency of the solar array, a maximum power point tracker (MPPT) is used in the power generation unit. In order to improve the MPPT performance, a novel algorithm is proposed on the basis of the hill climbing method. This method can track the main peak of the array power curve in satellites with long duration missions under unpredicted circumstances such as a part of the array being damaged or the presence of a shadow. A lithium-ion battery is utilized in the storage unit. An algorithm for calculating the optimal rate of battery charging is proposed where the battery is charged with the maximum possible efficiency considering the situation of the satellite. The proposed system is designed and manufactured. In addition, it is compared to the conventional power supply systems in similar satellites. Results show a 12% increase in the overall efficiency of the power supply system when compared to the conventional method.

Trajectory tracking control of underactuated USV based on modified backstepping approach

  • Dong, Zaopeng;Wan, Lei;Li, Yueming;Liu, Tao;Zhang, Guocheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.817-832
    • /
    • 2015
  • This paper presents a state feedback based backstepping control algorithm to address the trajectory tracking problem of an underactuated Unmanned Surface Vessel (USV) in the horizontal plane. A nonlinear three Degree of Freedom (DOF) underactuated dynamic model for USV is considered, and trajectory tracking controller that can track both curve trajectory and straight line trajectory with high accuracy is designed as the well known Persistent Exciting (PE) conditions of yaw velocity is completely relaxed in our study. The proposed controller has further been enriched by incorporating an integral action additionally for enhancing the steady state performance and control precision of the USV trajectory tracking control system. Global stability of the overall system is proved by Lyapunov theory and Barbalat's Lemma, and then simulation experiments are carried out to demonstrate the effectiveness of the controller designed.

Analysis of the acceleration of KHST prototype on the high speed test line (한국형 고속전철의 진동가속도 시험 연구)

  • Park Chankyounn;Kim Youngguk;Kim Seogwon
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.567-573
    • /
    • 2003
  • Korean High Speed Train (KHST) has been tested on high speed line in JungBu site since it was developed in 2002. The data acquisition system was developed to accomplish successfully this on-line test for proving the dynamic Performance of KHST. This system was consist of the personal computers based on National Instrument PXI modules and the test programs based on Labview 6i. This paper shows that this system is efficient to acquire the test data through the multi-channels connected the accelerometers which located in long distance places and flexible to change and add channels for data acquisition. The dynamic analysis of an on-line test is very complicate because the environmental conditions, as examples radius of curve, inclination of the track, tunnels, bridges, and so forth, and running conditions, as examples driving, braking, the number of working motors, and so forth, have an effect on the results. Therefor, the analysis method is important and this paper proposes the efficient procedure graphically, showing the proposed method simplify the accelerations of 5th bogie frame acquired during the on-line test for KHST.

  • PDF