• Title/Summary/Keyword: Curve Reconstruction

Search Result 70, Processing Time 0.025 seconds

Geometric Fitting of Parametric Curves and Surfaces

  • Ahn, Sung-Joon
    • Journal of Information Processing Systems
    • /
    • v.4 no.4
    • /
    • pp.153-158
    • /
    • 2008
  • This paper deals with the geometric fitting algorithms for parametric curves and surfaces in 2-D/3-D space, which estimate the curve/surface parameters by minimizing the square sum of the shortest distances between the curve/surface and the given points. We identify three algorithmic approaches for solving the nonlinear problem of geometric fitting. As their general implementation we describe a new algorithm for geometric fitting of parametric curves and surfaces. The curve/surface parameters are estimated in terms of form, position, and rotation parameters. We test and evaluate the performances of the algorithms with fitting examples.

Dynamic Range Reconstruction Algorithm for Smart Phone Camera Pulse Measurement Robust to Light Condition (조명 조건에 강건한 스마트폰 카메라 맥박 측정을 위한 다이내믹 레인지 재구성 알고리즘)

  • Park, Sang Wook;Cha, Kyoungrae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Recently, handy pulse measurement method was introduced by using smart phone camera. However, measured values are not consistent with the variations of external light conditions, because the external light interfere with dynamic range of captured pulse image. Thus, adaptive dynamic range reconstruction algorithm is proposed to conduct pulse measurement robust to light condition. The minimum and maximum values for dynamic ranges of green and blue channels are adjusted to appropriate values for pulse measurement. In addition, sigmoid function based curve is applied to adjusted dynamic range. Experimental results show that the proposed algorithm conducts suitably dynamic range reconstruction of pulse image for the interference of external light sources.

A Derivation of the Accuracy Relationship between the Reconstruction of 3D Object Coordinates and the Number of Closed Curves (폐곡선의 수에 따른 3차원 물체의 좌표 복원 정확도 관계 도출)

  • Lee, Deokwoo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.7
    • /
    • pp.1004-1013
    • /
    • 2017
  • This paper presents a relationship between the number of curves and geometric parameters of a 3D object. Once the relationship is established, the number of closed curves that can reliably represent 3D object is derived. Inspired by Shannon-Nyquist Sampling Theorem, in this paper, approach for sampling rate (defined as the minimum number of curves) for 3D reconstruction is proposed. The relationship is straightforward, is suitable for application to 3D object overlaid with closed-continuous curves, and can achieve efficient 3D reconstruction system in practice. To substantiate the proposed approach, simulation results are provided and the results show that the number of curves can be decreased without loss of generality of characteristics of a target 3D object.

Application of Matrix Adaptive Regularization Method for Human Thorax Image Reconstruction (인체 흉부 영상 복원을 위한 행렬 적응 조정 방법의 적용)

  • Jeon, Min-Ho;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.33-40
    • /
    • 2015
  • Inverse problem in electrical impedance tomography (EIT) is highly ill-posed therefore prior information is used to mitigate the ill-posedness. Regularization methods are often adopted in solving EIT inverse problem to have satisfactory reconstruction performance. In solving the EIT inverse problem, iterative Gauss-Newton method is generally used due to its accuracy and fast convergence. However, its performance is still suboptimal and mainly depends on the selection of regularization parameter. Although, there are few methods available to determine the regularization parameter such as L-curve method they are sometimes not applicable for all cases. Moreover, regularization parameter is a scalar and it is fixed during iteration process. Therefore, in this paper, a novel method is used to determine the regularization parameter to improve reconstruction performance. Conductivity norm is calculated at each iteration step and it used to obtain the regularization parameter which is a diagonal matrix in this case. The proposed method is applied to human thorax imaging and the reconstruction performance is compared with traditional methods. From numerical results, improved performance of proposed method is seen as compared to conventional methods.

An Accelerated Simulated Annealing Method for B-spline Curve Fitting to Strip-shaped Scattered Points

  • Javidrad, Farhad
    • International Journal of CAD/CAM
    • /
    • v.12 no.1
    • /
    • pp.9-19
    • /
    • 2012
  • Generation of optimum planar B-spline curve in terms of minimum deviation and required fairness to approximate a target shape defined by a strip-shaped unorganized 2D point cloud is studied. It is proposed to use the location of control points as variables within the geometric optimization framework of point distance minimization. An adaptive simulated annealing heuristic optimization algorithm is developed to iteratively update an initial approximate curve towards the target shape. The new implementation comprises an adaptive cooling procedure in which the temperature change is adaptively dependent on the objective function evolution. It is shown that the proposed method results in an improved convergence speed when compared to the standard simulated annealing method. A couple of examples are included to show the applicability of the proposed method in the surface model reconstruction directly from point cloud data.

Model-independent constraints on the light-curve parameters and reconstructions of the expansion history from Type Ia supernovae

  • Koo, Hanwool;Shafieloo, Arman;Keeley, Ryan;L'Huillier, Benjamin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.54.1-54.1
    • /
    • 2019
  • We use iterative smoothing reconstruction method along with exploring in the parameter space of the light curves of the JLA supernova compilation (Joint Light-curve Analysis) to simultaneously reconstruct the expansion history of the universe as well as putting constrains on the light curve parameters without assuming any cosmological model. Our constraints on the light curve parameters of the JLA from our model-independent analysis seems to be closely in agreement with results assuming ΛCDM cosmology or using Chevallier-Polarski-Linder (CPL) parametrization for the equation of state of dark energy. This implies that there is no hidden significant feature in the data that could be neglected by cosmology model assumption. The reconstructed expansion history of the universe and properties of dark energy seems to be in good agreement with expectations of the standard ΛCDM model. Our results also indicate that the data allows a considerable flexibility for expansion history of the universe.

  • PDF

Collision Configurations Reconstruction Using Deformation Shape and Deformation Severity of Car Body (차체의 변형상과 변형정도에 의한 자동차 충돌상황의 재구성)

  • 장인식;채덕병
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.171-180
    • /
    • 2001
  • Collision accident reconstruction algorithm are developed based on the deformation shape and severity of a car body. At first, the body stiffness equation representing the force-deformation relationship is derived using finite element analysis for head on collision of two cars. The database of deformation shapes and energies is constructed for five different collision configurations; each configuration contains three velocity conditions. Deformation shapes are obtained using a curve fitting method and result in cubic polynomials. Deformation energies are calculated using a stiffness equation and deformation data. Three algorithms are developed to reconstruct collision configuration compared with constructed database. The developed algorithms show reasonably good performance to find collisions conditions for some test problems.

  • PDF

Structural Dynamic System Reconstruction (구조물 동적시스템 재현기법)

  • Kim, Hyeung-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.308-312
    • /
    • 2002
  • To determine the natural frequencies and damping ratios of composite laminated plates, we present an officient modal parameter estimation technique by developing residual spectrum based structural system reconstruction. The modal parameters can be estimated from poles and residues of the system transfer functions, derived from the state space system matrices. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios can be estimated using the modal coordinates of the structural dynamic system reconstructed from the experimental frequency response functions. These results are compared with those of finite element analysis and single-degree-of-freedom curve fitting.

A NON-ITERATIVE RECONSTRUCTION METHOD FOR AN INVERSE PROBLEM MODELED BY A STOKES-BRINKMANN EQUATIONS

  • Hassine, Maatoug;Hrizi, Mourad;Malek, Rakia
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1079-1101
    • /
    • 2020
  • This work is concerned with a geometric inverse problem in fluid mechanics. The aim is to reconstruct an unknown obstacle immersed in a Newtonian and incompressible fluid flow from internal data. We assume that the fluid motion is governed by the Stokes-Brinkmann equations in the two dimensional case. We propose a simple and efficient reconstruction method based on the topological sensitivity concept. The geometric inverse problem is reformulated as a topology optimization one minimizing a least-square functional. The existence and stability of the optimization problem solution are discussed. A topological sensitivity analysis is derived with the help of a straightforward approach based on a penalization technique without using the classical truncation method. The theoretical results are exploited for building a non-iterative reconstruction algorithm. The unknown obstacle is reconstructed using a levelset curve of the topological gradient. The accuracy and the robustness of the proposed method are justified by some numerical examples.

Breast Reconstruction with Lower Abdominal Tissue Free Transfer (하복부 조직 유리피판에 의한 유방재건술)

  • Ahn, Hee-Chang
    • Archives of Reconstructive Microsurgery
    • /
    • v.19 no.1
    • /
    • pp.68-79
    • /
    • 2010
  • Lower abdominal tissue is regarded as an ideal donor site for the breast reconstruction because it provides large skin territory and huge amount of soft tissues enough to the breast size. However it is not easy for the surgeon to reconstruct the really natural breast, and needs the learning curve with long time experience. Author represent the various reconstruction procedures for the breast using lower abdominal tissue such as muscle sparing free TRAM, DIEP, and SIEA free flaps to reinsure like breast. Indications, and selection of reconstructive methods, surgical timing, selection of donor sites and recipient vessel of these flaps were reviewed. In addition, detailed procedures, surgical tips and secondary adjuvant procedures are described for more symmetry of reconstructed breast. The muscle sparing free TRAM, DIEP, and SIEA free flaps would be enough to provide supple, huge amount of well vascularized tissue for the breast, if these flaps were selected for the appropriate indication according to patient's general condition, obesity, the opposite breast and abdominal tissue condition. Lower abdominal tissue was able to provide versatile designs with sufficient adipose tissue without compromising the integrity of abdominal wall.

  • PDF