• Title/Summary/Keyword: Curve Number(CN)

Search Result 117, Processing Time 0.024 seconds

SCS Curve Number and temporal Variation of Rainfall (강우의 시간분포를 고려한 CN값 산정)

  • Cho, Hong-Je;Lee, Tae-Young
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.183-193
    • /
    • 2003
  • A relation between the temporal variation of rainfall and direct runoff was characterized using temporal indexes of rainfall(1st, 2nd, 3rd, and 4th moment). Curve Number has a relation with 1st and 2nd moment for AMCIII condition when the rainfall duration is relative (10th quantile). Also peak runoff ratio(QP/Q) has a relation with 1st and End moment for AMCIII condition as well as 3rd and 4th moment for AMC I condition. Considering all durations of rainfall, alternatively, Curve Number has a relation with 1st and 2nd moment for AMCIIIcondition besides every moments for AMC I condition. But peak runoff ratio(QP/Q) has few relations excepting 3rd and 4th moment for AMC I condition. As a results, temporal indexes of rainfall are useful to determine curve numbers regarding the temporal variation of rainfall.

Runoff Curve Number Estimation for Cover and Treatment Classification of Satellite Image(I): - CN Estimation - (위성영상 피복분류에 대한 CN값 산정(I): - CN값 산정 -)

  • Bae, Deg-Hyo;Lee, Byong-Ju;Jeong, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.985-997
    • /
    • 2003
  • The objective of this study is to propose Runoff Curve Numbers(CNs) for land cover and treatment classification of satellite image. For this purpose, land cover classifications by using satellite image in addition to the exiting SCS's land cover and treatment classifications studies and land cover classifications suggested by Ministry of Environment are selected to provide CNs depending on the classifications. CNs estimation method is statistical approach that is suggested by Hjelmfelt(1991). Result of this study may contribute to use efficiently for the estimation of CNs in using satellite image.

Construction of the Curve Number Estimation System Using Geographic Information System (GIS를 이용한 CN 산정시스템 구축)

  • Chae, Jong Hun.;Jeong, In Ju;Kim, Sang Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1262-1266
    • /
    • 2004
  • The current combining of computer and geographic information technology. The result of such research oil determinate objective factors of hydrologic-topographical parameters through joining hydrology and GIS(Geographic Information System). In this study, we wish to offer the base data to determinate hydrologic-topographical parameters request of runoff model analysis in this basin. First, we computed the CN(curve number) by using GIS, and then classify the digital map of soil group and landuse on the Sulma river basin. Second, we used Avenue Script to calculate the height of efficient GIS work before using the Clark model to work out flood runoff flow.

  • PDF

Estimation of Runoff Curve Number using Antecedent Runoff Condition (Bangrim and Sanganmi Basin) (선행유출조건(ARC) 방법을 통한 유출곡선지수의 산정(방림, 상안미 유역))

  • Yang, Jae-Mo;Park, Cheong-Hoon;Kim, Joong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.288-288
    • /
    • 2011
  • 최근 들어 관측된 강우-유출 사상으로부터 유출곡선지수(Runoff curve number, CN)를 계산하는 연구가 수행되어왔으며, 이것은 기존 선행토양함수조건(Antecedent Moisture Condition; AMC) 을 이용한 유출곡선지수 적용에 대한 여러 문제점(AMC 기준의 타당성, 초기손실우량과 최대잠재보유수량의 비($I_a$ S=0.20의 적정성))이 부각되면서 선행유출조건을 이용한 유출곡선지수가 제안되었다. 본 연구에서는 선행유출조건(Antecedent Runoff Condition, ARC) 방법을 적용하여 IHP유역인 방림과 상안미 유역의 강우-유출자료로부터 CN을 직접 산정하였다. 먼저 방림과 상안미 유역에서 각각 12개, 10개의 관측된 강우-유출 사상을 통해 초기손실우량과 최대잠재보유수량의 비($I_a$/S)가 기존 가정의 0.20보다 작은 것을 확인하고 수정된 $I_a$/S비를 고려하여 대상 유역에서의 적정 CN을 산정하였다. 실제 강우-유출 사상에서 산정한 각 사상별 CN의 대표값을 찾기 위해 ARC-II의 평균유출조건으로 가정하여 각 사상별 단순평균과 4개의 지속기간(4시간, 3시간, 2시간, 1시간)별로 구분하여 평균한 CN을 구분하였다. 이를 통해 계산된 유효우량과 관측 유효우량과 비교를 실시하였으며 각 사상을 단순 평균한 ARC-II 조건으로 가정하여 계산된 CN의 오차가 가장 작은 것으로 나타났다. 따라서 기존의 선행토양함수조건(Antecedent soil moisture condition, AMC)의 CN으로 산정된 유효우량과 ARC조건으로 산정된 유효우량을 비교한 결과 방림유역에서 는 오차가 ARC 방법의 경우 37.76%, AMC 방법의 경우 51.27%로 평가되었고 상안미 유역에서는 오차가 ARC의 경우 31.97%, AMC 방법의 경우43.08%로 두 유역에서 모두 ARC 방법으로 산정된 CN이 더 적은 오차값을 주었다. 따라서 방림과 상안미 유역에서의 ARC로 산정된 CN값은 유효우량 산정의 정확성을 향상시킬 수 있으리라 판단된다.

  • PDF

Curve Number for a Small Forested Mountainous Catchment (산지 소유역 유출곡선지수)

  • Oh, Kyoung-Doo;Jun, Byong-Ho;Han, Hyung-Geun;Jung, Sung-Won;Cho, Young-Ho;Park, Soo-Yun
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.605-616
    • /
    • 2005
  • In this paper, runoff curve numbers (CN's) for a small forested mountainous catchment are estimated using rainfall-runoff data measured at Sulma experimental catchment every 10 minutes and a new guideline for applying the antecedent rainfall conditions (ARC's) for small mountainous watersheds in Korea is proposed. Sulma experimental catchment is a typical natural mountainous basin with $97\%$ of forested land cover and CN's are estimated to be in the range between 51 and 89 with median value of 72. The test hypothesis stating as 1-day ARC is better than 5-day ARC in determining CN's for a small mountainous watershed is shown to be acceptable. Also, linear regression equations for the estimation of CN's for small mountainous catchments are proposed. As there is no significant investigations available on CN's for small mountainous catchments, the newly proposed relationships between CN's and ARC may be used as a preliminary guideline to assign CN's for the estimation of floods from rainfall data on mountainous regions.

Runoff Volume Estimation Technique with Consideration of CN Distribution (CN 분포를 고려한 총 유출량 산정기법)

  • Yun, La-Young;Son, Kwang-Ik;Shin, Seoung-Chul;Roh, Jin-Wook;Shim, Jae-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1880-1884
    • /
    • 2007
  • The Natural Resource Conservation Service Curve Number(NRCS-CN) method is one of the widely used methods for computation of runoff from a basin. However, NRCS-CN method has weak point in that the spatial land use distribution characteristics are ignored by using area weighted CN value. This study developed a program which can estimate runoff by considering spatial distribution of CN and flow accumulation at the outlet of the watershed by appling Moglen's method. Comparisons between the results from NRCS-CN method and this study showed good agreement with measured data of experimental watersheds. The developed program predicted lower runoff than the conventional NRCS-CN method. As a conclusion, this study proposes a new design direction which can simulate real runoff phenomena. And the developed program could be applied into runoff minimization design for a basin development.

  • PDF

Redetermining the curve number of Korean forest according to hydrologic condition class (수문학적 조건 등급에 따른 우리나라 산림의 유출곡선지수 재산정)

  • Park, Dong-Hyeok;Yu, Ji Soo;Ahn, Jae-Hyun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.653-660
    • /
    • 2017
  • The SCS-CN (Soil Conservation Service-Curve Number) method has been practically applied for estimating the effective precipitation. The CN is used to be determined according to the land use condition based on the US standard. However, there are two distinctive differences between U.S. and Korean land use conditions: mountainous (forest) and rice paddy area that cover more than 70% of the Korean territory. The previous work proposed to use 79 for rice paddy area, regardless of the soil type. Because US SCS's goal was originally to increase crops, the SCS classification standard provides only for woods and there are no criteria to distinguish the wood and forest. To determine the CN for forest, alternatively the U.S. Forest Service criteria have been employed in practice considering hydrologic condition class. In this study, we investigated the change of the forest CN using the observed rainfall - runoff data within the target area. The results indicated that the CN for forest was suitable for HC=1, and the corresponding CNs were redetermined between 54 and 55.

The Effect of Slope-based Curve Number Adjustment on Direct Runoff Estimation by L-THIA (경사도에 따른 CN보정에 의한 L-THIA 직접유출 모의 영향 평가)

  • Kim, Jonggun;Lim, Kyoung Jae;Park, Younshik;Heo, Sunggu;Park, Joonho;Ahn, Jaehun;Kim, Ki-sung;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.897-905
    • /
    • 2007
  • Approximately 70% of Korea is composed of forest areas. Especially 48% of agricultural field is practiced at highland areas over 400 m in elevation in Kangwon province. Over 90% of highland agricultural farming is located at Kangwon province. Runoff characteristics at the mountainous area such as Kangwon province are largely affected by steep slopes, thus runoff estimation considering field slopes needs to be utilized for accurate estimation of direct runoff. Although many methods for runoff estimation are available, the Soil Conservation Service (SCS), now Natural Resource Conservation Service (NRCS), Curve Number (CN)-based method is used in this study. The CN values were obtained from many plot-years dataset obtained from mid-west areas of the United States, where most of the areas have less than 5% in slopes. Thus, the CN method is not suitable for accurate runoff estimation where significant areas are over 5% in slopes. Therefore, the CN values were adjusted based on the average slopes (25.8% at Doam-dam watershed) depending on the 5-day Antecedent Moisture Condition (AMC). In this study, the CN-based Long-Term Hydrologic Impact Assessment (L-THIA) direct runoff estimation model used and the Web-based Hydrograph Analysis Tool (WHAT) was used for direct runoff separation from the stream flow data. The $R^2$ value was 0.65 and the Nash-Sutcliffe coefficient value was 0.60 when no slope adjustment was made in CN method. However, the $R^2$ value was 0.69 and the Nash-Sutcliffe value was 0.69 with slope adjustment. As shown in this study, it is strongly recommended the slope adjustment in the CN direct runoff estimation should be made for accurate direct runoff prediction using the CN-based L-THIA model when applied to steep mountainous areas.

Comparing Calculation Techniques for Effective Rainfalls Using NRCS-CN Method: Focused on Introducing Weighted Average and Slope-based CN (NRCS-CN 방법을 이용한 유효우량 산정기법의 비교분석: 가중평균방법과 경사도 도입을 중심으로)

  • Moon, Geon-Woo;Yoo, Ji-Young;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1171-1180
    • /
    • 2014
  • The NRCS-CN method is generally used to estimate effective rainfalls in a basin. However, since the curve number which plays a critical role in the NRCS-CN method was originally developed for US watersheds, it is limited to be directly applied to other basins outside the United States. Therefore various modifications have been suggested to revise the NRCS-CN for specific watershed condition. This study introduced the weighted average method and the slope-based CN to estimate effective rainfalls available for Korean watersheds and compared with the observed direct runoff. The overall results achieved from this study indicated that the adjusted slope-based CN considerably increases effective rainfalls in general and makes the duration of effective storm longer. Based on the statistical error analysis performed for various modifications of NRCS-CN, the weighted average method with the adjusted slope-based CN has highest precision with the observed direct runoff. In addition, after analyzing the relation between the initial loss estimated from rainfall-runoff observations and the potential maximum retention from GIS-based data, it turns out that the assumption of linear relationship between the initial loss and the potential maximum retention is not available for Korean watersheds.

A Study on the Computation of Curve Number Using GIS (GIS를 이용한 CN 산정에 관한 연구)

  • Cho, Yong-Jae;Park, Sang-Ju;Jeong, In-Ju;Kim, Sang-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.3 s.26
    • /
    • pp.47-53
    • /
    • 2003
  • Recently, there is studying about slope analysis according to cell size and affect in conformity to determination of hydrologic topographical parameters the cell size a classified map scale about subwatershed. In this study, we wish to offer the base data to determination of hydrologic topographical parameters request of runoff model analysis in this basin on the basis of this results that we compute the CN(curve number) using GIS after classify the map of soil and landuse on the Su-Young River basin. Also, as determination a classified cell size of $100m{\times}100m$ in case of the most optimum size.

  • PDF