• Title/Summary/Keyword: Curvature.

Search Result 3,957, Processing Time 0.026 seconds

The effect analysis of birefringence of plastic f$\heta$ Iens on the beam diameter (플라스틱 f$\heta$렌즈의 복굴절이 결상빔경에 미치는 영향분석)

  • 임천석
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.2
    • /
    • pp.73-79
    • /
    • 2000
  • We measure a beam diameter of scan and sub-scan direction of LSD (Laser Scanning Urnt) which uses $fheta$ lens produced by injecLion molding method as a scanning lens. While the measured beam diameter in scan direction, which is $62muextrm{m}$ to $68\mu\textrm{m}$, shows similar size comparing to the design beam diameter, the sub-scan beam diameter shows sIzable beam diameter deviation as much as 37 11m ranging from $78\mu\textrm{m}$ to $115\mu\textrm{m}$. Injection molding lens has the surface figure error due to the shrinkage III the cooling time and the internal distortion (birefringence) due to the uneven cooling conditIOn so that these bring about wavefront aberration (i.e., the enlargement of beam size), and are eventually expre~sed as the deterioration of the pdnting image. In this paper. we first measure and analyze beam diameter, birefringence (polanzation ratio), and asphedcal figure error of mIens in order to know the principle cause of the beam diameter deviation in sub-scan directIOn. And Lhen. through the analysis of a designed depth of focus and a calculated field curvature (imaging position of the optical axis directIon) using the above figure elTor data, we know Lhat the birefringence IS the main factor of sizable beam diameter deVIation in sub-scan direction. ction.

  • PDF

Studies on Curved Diffractive Optical Elements in EUV (극자외선 영역에서 곡면 DOEs에 관한 연구)

  • Choi, Sung-Eul;Lee, Yong-Woo;Kwon, Myung-Hoi;Kim, Yong-Hoo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.304-312
    • /
    • 2005
  • Field performance of several different types of diffractive optical elements(DOEs) has been carried out. Using Zemax model, we have designed five different types of DOEs, such as transmissive flat-DOE, transmissive curved-DOE, reflective flat-DOE, reflective curved-DOE and parabolic mirror, We have applied two different wavelengths, i.e., 13 m(EUV) and 632.8 nm(visible) to above DOEs. Off_axis dominate aberrations and the diffraction limiting (Rayleigh limit) field angles have been investigated and compared at both wavelengths for each DOE. At diffraction limit, field angle of curved-DOEs was much greater than that of flat-DOEs for both transmission and reflective types. We also showed that dominated off_axis aberration of flat-DOEs was coma, but that of curved-DOEs was mixture of astigmatism and curvature of field. The measured field angle and expected OPD aberrations were well coincided with theoretical ones. Increasing the ratio of field angle with wavelength was more effective in curved-DOEs than flat-DOEs.

Development of a Solar Concentrator having the Reflecting Surface with the 2m Class Diameter (직경 2m급 반사면을 가지는 태양열 집광 장치 개발)

  • Cha, Jung-Won;Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.4
    • /
    • pp.75-81
    • /
    • 2008
  • Purpose: To develop a solar concentrator having the reflecting surface with the 2m class diameter. Methods: In order to make the reflecting surface for the solar concentrator, the shape of the reflecting surface sector is required. So, first, we induced the formula that can produce this shape. After that, using Delphi 6.0 language, we developed a program which uses this formula and produces the shape and the numerical data of the reflecting surface sector with the input variables such as the external diameter of the reflecting mirror, the reflecting mirror's radius of curvature at the paraxial range, the number of reflecting mirror sector, the size of the center hole of the reflecting mirror, and the interval of the output data. Results: This program, which was developed to produce the shape and the numerical data of the reflecting surface sector, enables us to see the shape of sector on the monitor and to save the numerical data files for the shape of sector. As a result, the user of this program can easily access the numerical data of the reflecting surface sector. Conclusions: Developing the program which produce the reflecting surface sector used to make the reflecting surface of the solar concentrator, we could succeed in making the prototype products by applying it to the development of the real solar concentrator with the diameter of the 2m class.

  • PDF

Mesh Simplification for Preservation of Characteristic Features using Surface Orientation (표면의 방향정보를 고려한 메쉬의 특성정보의 보존)

  • 고명철;최윤철
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.4
    • /
    • pp.458-467
    • /
    • 2002
  • There has been proposed many simplification algorithms for effectively decreasing large-volumed polygonal surface data. These algorithms apply their own cost function for collapse to one of fundamental simplification unit, such as vertex, edge and triangle, and minimize the simplification error occurred in each simplification steps. Most of cost functions adopted in existing works use the error estimation method based on distance optimization. Unfortunately, it is hard to define the local characteristics of surface data using distance factor alone, which is basically scalar component. Therefore, the algorithms cannot preserve the characteristic features in surface areas with high curvature and, consequently, loss the detailed shape of original mesh in high simplification ratio. In this paper, we consider the vector component, such as surface orientation, as one of factors for cost function. The surface orientation is independent upon scalar component, distance value. This means that we can reconsider whether or not to preserve them as the amount of vector component, although they are elements with low scalar values. In addition, we develop a simplification algorithm based on half-edge collapse manner, which use the proposed cost function as the criterion for removing elements. In half-edge collapse, using one of endpoints in the edge represents a new vertex after collapse operation. The approach is memory efficient and effectively applicable to the rendering system requiring real-time transmission of large-volumed surface data.

  • PDF

Comparison of apical transportation and change of working length in K3, NRT AND PROFILE rotary instruments using transparent resin block (Transparent resin block을 이용한 K3, NRT, PROFILE의 apical transportation 및 working length 변화양상의 비교)

  • Yoon, Min-Jung;Song, Min-Ju;Shin, Su-Jung;Kim, Eui-Seong
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.1
    • /
    • pp.59-65
    • /
    • 2011
  • Objectives: The purpose of this study is to compare the apical transportation and working length change in curved root canals created in resin blocks, using 3 geometrically different types of Ni-Ti files, K3, NRT, and Profile. Materials and Methods: The curvature of 30 resin blocks was measured by Schneider technique and each groups of Ni-Ti files were allocated with 10 resin blocks at random. The canals were shaped with Ni-Ti files by Crown-down technique. It was analyzed by Double radiograph superimposition method (Backman CA 1992), and for the accuracy and consistency, specially designed jig, digital X-ray, and CAD/CAM software for measurement of apical transportation were used. The amount of apical transportation was measured at 0, 1, 3, 5 mm from 'apical foramen - 0.5 mm' area, and the alteration of the working length before and after canal shaping was also measured. For statistics, Kruskal-Wallis One Way Analysis was used. Results: There was no significant difference between the groups in the amount of working length change and apical transportation at 0, 1, and 3 mm area (p = 0.027), however, the amount of apical transportation at 5 mm area showed significant difference between K3 and Profile system (p = 0.924). Conclusions: As a result of this study, the 3 geometrically different Ni-Ti files showed no significant difference in apical transportation and working length change and maintained the original root canal shape.

A comparison of canal centering abilities of four root canal instrument systems using X-ray micro-computed tomography (방사선 미세컴퓨터단층촬영을 이용한 네 종류 file systems의 중심유지능에 관한 비교)

  • Ko, Hye-Suk;You, Heyon-Mee;Park, Dong-Sung
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.1
    • /
    • pp.61-68
    • /
    • 2007
  • The purpose of this study was to compare the centering abilities of four root canal instrument systems and the amounts of dentin removed after root canal shaping using them. The mesial canals of twenty extracted mandibular first molars having $10-20^{\circ}$ curvature were scanned using X-ray micro-computed tomography (XMCT)-scanner before root canals were instrumented. They were divided into four groups (n = 10 per group). In Group 1, root canals were instrumented by the step-back technique with stainless steel K-Flexofile after coronal flaring. The remainders were instrumented by the crown-down technique with Profile (Group 2), ProTaper (Group 3) or K3 system (Group 4). All canals were prepared up to size 25 at the end-point of preparation and scanned again. Scanned images were processed to reconstruct three-dimensional images using three-dimensional image software and the changes of total canal volume were measured. Pre-and post-operative cross-sectional images of 1, 3, 5, and 7 mm from the apical foramen were com pared. For each level, centering ratio were calculated using Adobe Photoshop 6.0 and image software program. ProTaper and K3 systems have a tendency to remove more dentin than the other file systems. In all groups, the lowest value of centering ratio at 3 mm level was observed. And except at 3 mm level, ProTaper system made canals less centered than the other systems (p < 0.05).

The Predictable Factors of the Postoperative Kyphotic Change of Sagittal Alignment of the Cervical Spine after the Laminoplasty

  • Lee, Jun Seok;Son, Dong Wuk;Lee, Su Hun;Kim, Dong Ha;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.5
    • /
    • pp.577-583
    • /
    • 2017
  • Objective : Laminoplasty is an effective surgical method for treating cervical degenerative disease. However, postoperative complications such as kyphosis, restriction of neck motion, and instability are often reported. Despite sufficient preoperative lordosis, this procedure often aggravates the lordotic curve of the cervical spine and straightens cervical alignment. Hence, it is important to examine preoperative risk factors associated with postoperative kyphotic alignment changes. Our study aimed to investigate preoperative radiologic parameters associated with kyphotic deformity post laminoplasty. Methods : We retrospectively reviewed the medical records of 49 patients who underwent open door laminoplasty for cervical spondylotic myelopathy (CSM) or ossification of the posterior longitudinal ligament (OPLL) at Pusan National University Yangsan Hospital between January 2011 and December 2015. Inclusion criteria were as follows : 1) preoperative diagnosis of OPLL or CSM, 2) no previous history of cervical spinal surgery, cervical trauma, tumor, or infection, 3) minimum of one-year follow-up post laminoplasty with proper radiologic examinations performed in outpatient clinics, and 4) cases showing C7 and T1 vertebral body in the preoperative cervical sagittal plane. The radiologic parameters examined included C2-C7 Cobb angles, T1 slope, C2-C7 sagittal vertical axis (SVA), range of motion (ROM) from C2-C7, segmental instability, and T2 signal change observed on magnetic resonance imaging (MRI). Clinical factors examined included preoperative modified Japanese Orthopedic Association scores, disease classification, duration of symptoms, and the range of operation levels. Results : Mean preoperative sagittal alignment was $13.01^{\circ}$ lordotic; $6.94^{\circ}$ lordotic postoperatively. Percentage of postoperative kyphosis was 80%. Patients were subdivided into two groups according to postoperative Cobb angle change; a control group (n=22) and kyphotic group (n=27). The kyphotic group consisted of patients with more than $5^{\circ}$ kyphotic angle change postoperatively. There were no differences in age, sex, C2-C7 Cobb angle, T1 slope, C2-C7 SVA, ROM from C2-C7, segmental instability, or T2 signal change. Multiple regression analysis revealed T1 slope had a strong relationship with postoperative cervical kyphosis. Likewise, correlation analysis revealed there was a statistical significance between T1 slope and postoperative Cobb angle change (p=0.035), and that there was a statistically significant relationship between T1 slope and C2-C7 SVA (p=0.001). Patients with higher preoperative T1 slope demonstrated loss of lordotic curvature postoperatively. Conclusion : Laminoplasty has a high probability of aggravating sagittal balance of the cervical spine. T1 slope is a good predictor of postoperative kyphotic changes of the cervical spine. Similarly, T1 slope is strongly correlated with C2-C7 SVA.

Hand Region Tracking and Fingertip Detection based on Depth Image (깊이 영상 기반 손 영역 추적 및 손 끝점 검출)

  • Joo, Sung-Il;Weon, Sun-Hee;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.8
    • /
    • pp.65-75
    • /
    • 2013
  • This paper proposes a method of tracking the hand region and detecting the fingertip using only depth images. In order to eliminate the influence of lighting conditions and obtain information quickly and stably, this paper proposes a tracking method that relies only on depth information, as well as a method of using region growing to identify errors that can occur during the tracking process and a method of detecting the fingertip that can be applied for the recognition of various gestures. First, the closest point of approach is identified through the process of transferring the center point in order to locate the tracking point, and the region is grown from that point to detect the hand region and boundary line. Next, the ratio of the invalid boundary, obtained by means of region growing, is used to calculate the validity of the tracking region and thereby judge whether the tracking is normal. If tracking is normal, the contour line is extracted from the detected hand region and the curvature and RANSAC and Convex-Hull are used to detect the fingertip. Lastly, quantitative and qualitative analyses are performed to verify the performance in various situations and prove the efficiency of the proposed algorithm for tracking and detecting the fingertip.

Crashworthiness Analysis and Shape Design Optimization of Thin-walled Corrugated Tubes under Axial Impact (축 방향 충격을 받는 박판 파형관의 충돌안전도 해석 및 형상 최적설계)

  • Ahn, Seung Ho;Jung, Hyun Seung;Kim, Jin Sung;Son, Seung Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.128-135
    • /
    • 2021
  • Thin-walled tubes have been widely used as energy absorbing devices because they are light and have high energy-absorption efficiency. However, the downside is that conventional thin-walled tubes usually exhibit an excessive initial peak crushing force (IPCF) and a large fluctuation in the load-displacement curve, and thus lack stability as energy absorbing devices. Corrugated tubes were introduced to reduce IPCF and to increase the stability of collision energy-absorbing devices. Since the performance of corrugated tubes is highly influence by geometry, design optimization methods can be utilized to optimize the performance of corrugated tubes. In this paper, we utilize shape design optimization based on an adaptive surrogate model for crashworthiness analysis. The amplitude and wavelength of the corrugation, as well as curvature changes in the features, are the design variables. A morphing methodology is adopted to perform shape design parameterization. Through numerical examples, we compare optimal design results based on the adaptive surrogate model, with optimal results based on conventional surrogate models, and we show that direct optimal design methods produce more efficient results.

Analysis of Take-over Time and Stabilization of Autonomous Vehicle Using a Driving Simulator (드라이빙 시뮬레이터를 이용한 자율주행자동차 제어권 전환 소요시간 및 안정화 특성 분석)

  • Park, Sungho;Jeong, Harim;Kwon, Cheolwoo;Kim, Jonghwa;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.31-43
    • /
    • 2019
  • Take-overs occur in autonomous vehicles at levels 3 and 4 based on SAE. For safe take-over, it is necessary to set the time required for diverse drivers to complete take-over in various road conditions. In this study, take-over time and stabilization characteristics were measured to secure safety of take-over in autonomous vehicle. To this end, a virtual driving simulator was used to set up situations similar to those on real expressways. Fifty drivers with various sexes and ages participated in the experiment where changes in traffic volume and geometry were applied to measure change in takeover time and stabilization characteristics according to various road conditions. Experimental results show that the average take-over time was 2.3 seconds and the standard deviation was 0.1 second. As a result of analysis of stabilization characteristics, there was no difference in take-over stabilization time due to the difference of traffic volume, and there was a significant difference by curvature changes.