• Title/Summary/Keyword: Curvature Effect

Search Result 650, Processing Time 0.033 seconds

Study on the Fairway Used by Coastal Passenger Ship at Mokpo Port (목포항 입출항 연안여객선의 이용 항로에 관한 고찰)

  • Lee, Li-Na;Lee, Hong-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.525-532
    • /
    • 2022
  • The port of Mokpo operates the largest number of coastal passenger ships and routes in Korea. These coastal passenger ships pass through narrow channels in the south-west coast of Korea owing to the geographical effect. It is difficult to find a research for the safety of the marine traffic environment in the narrow channel used by coastal passenger ship. Therefore, in this study, the navigation safety of the target coastal passenger ship was analyzed in the narrow channel near the port of Mokpo using the Korea design standard for port and harbour facilities. As a result of the analysis, the width of the narrow channel between Maek-island and Dali-island is narrower than 1.5 times of the target ship's length over all, the degree of curvature of the narrow channel exceeds the standard value of 30°, and several fishing gears exist near the narrow channel. Finally, the following were suggested to improve the safety of navigation on the narrow channel: keeping one-way traffic during the day-time, and navigating through the designated fairway during night·visibility restriction·low tide.

Application of Linear Curve Fitting Methods for Slug Test Analysis in Compressible Aquifer (압축성이 큰 지반에서 순간변위(충격)시험 해석을 위한 선형 커브피팅법(Linear Curve Fitting Methods)의 적용)

  • Choi, Hang-Seok;Lee, Chul-Ho;Nguyen, The Bao
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.99-107
    • /
    • 2007
  • The linear curve fitting methods such as the Hvorslev method and the Bouwer and Rice method provide a rapid and simple means to analyze slug test data for estimating in-situ hydraulic conductivity (k) of geologic material. However, when analyzing a slug test in a relatively compressible aquifer, these methods have difficulties in fitting a straight line to the semi-logarithmic plot of the test data that shows a concave-upward curvature because the linear curve fitting methods ignore the role of the compressibility or specific storage ($S_s$) of an aquifer. The comparison of the Hvorslev method and the Bouwer and Rice method is made far a partially-penetrating well geometry to show analytically that the Hvorslev method estimates higher hydraulic conductivity than the Bouwer and Rice method except that the well intake section locates very close to the bottom of the aquifer. The effect of fitting a straight line to the slug test data is evaluated along with the dimensionless compressibility parameter (${\alpha}$) ranging from 0.001 to 1. A modified linear curve fitting method that is expanded from Chirlin's approach to the case of a partially penetrating well with the basic-time-lag fitting method is introduced. A case study for a compressible glacial till is made to verify the proposed method by comparing with a type curve method (KGS method).

Development of the Large-Capacity Mooring Fittings according to MEG4(Mooring Equipment Guideline 4) (MEG4(Mooring Equipment Guideline 4) 적용에 따른 대용량 무어링 피팅 개발)

  • Myung-Su Yi;Kwang-Cheol Seo;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.950-957
    • /
    • 2023
  • For safe mooring and towing between the ship and port, the equipment must be designed in accordance with the relevant international regulations. However, some small shipyards and engineering companies often do not fully comprehend the core contents. Therefore, the international regulations regarding towing and mooring equipment are reviewed and the bollard and chock are newly developed based on the Mooring Equipment Guideline 4 (MEG4) standards. A bollard is a mooring equipment used to fix a mooring rope to the hull. It has two columns and is mostly used in a figure eight pattern knots under the mooring condition. The chock, which is used to change the mooring rope direction coming into the ship from outside, is manufactured using a casting with curvature. The two mooring equipment are widely used in the stern, bow, and mid-side. Owing to the increase in the size of container vessels and LNG ships, the mooring rope load has increased and the safe working load of the mooring equipment must be revised. This study summarizes and examines the results of the allowable stress method obtained using finite element analysis modelling. To consider the mesh size effect, a reasonable criteria was suggested by referring the existing class guidance. Additionally, the safe working load was verified through nonlinear collapse analysis, and the elastic region against load increments was confirmed. Furthermore, the proposed evaluation method can be used to develop similar equipment in the near future.

Study of Downward Speed Limit of Main Roads on Traffic Accident and Effect Analysis - In Busan Metropolitan City - (간선도로 최고속도제한 하향이 교통사고에 미치는 영향 및 효과분석 - 부산광역시를 중심으로 -)

  • Lim, Chang-Sik;Choi, Yang-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.81-90
    • /
    • 2018
  • The purpose of this study is to evaluate the effect of downward speed limit of urban arterial roads at 29 sites in Busan Metropolitan Police Agency to reduce road traffic accidents from '10 to '15. As a result of analyzing the traffic accidents occurred for 1~3 years after the decrease in the speed limit, the number of traffic accidents decreased by 3.09% and the number of injured persons decreased by 8.76%, but the number of deaths decreased by 36.73% The results of this study are as follows. The average speed reduction rate of 6.31km/h was decreased by investigating the change of the vehicle speed before and after the downward speed limit, and the change of average speed was statistically significant in most of the sections. The rate of compliance with the speed limit increased by 10.26% p, which is considered to have greatly improved overall traffic safety. A survey conducted by residents near the target area with a lower speed limit showed that 57.9% of the respondents felt the driving speed of the vehicle was lowered. However, this project was focused on vehicles with limited speed road signs and traffic safety signs, Only 25.8% of respondents said walking safety was improved. In the future, it is necessary to consider the safety of pedestrians by improving roads around roads such as road curvature and separation. In addition, there is a clear positive result in terms of decreasing the fatal accidents in the downward speed limit zone of Busan Metropolitan Subway. However, more detailed analysis is needed for the 29 accidents. Therefore, it is expected that traffic practitioners will be able to utilize it as a basis to increase the accident reduction effect by setting an appropriate speed limit based on the easy and objective grounds.

Technical Efficiency in Korea: Interindustry Determinants and Dynamic Stability (기술적(技術的) 효율성(效率性)의 결정요인(決定要因)과 동태적(動態的) 변화(變化))

  • Yoo, Seong-min
    • KDI Journal of Economic Policy
    • /
    • v.12 no.4
    • /
    • pp.21-46
    • /
    • 1990
  • This paper, a sequel to Yoo and Lee (1990), attempts to investigate the interindustry determinants of technical efficiency in Korea's manufacturing industries, and also to conduct an exploratory analysis on the stability of technical efficiency over time. The hypotheses set forth in this paper are most found in the existing literature on technical efficiency. They are, however, revised and shed a new light upon, whenever possible, to accommodate any Korea-specific conditions. The set of regressors used in the cross-sectional analysis are chosen and the hypotheses are posed in such a way that our result can be made comparable to those of similar studies conducted for the U.S. and Japan by Caves and Barton (1990) and Uekusa and Torii (1987), respectively. It is interesting to observe a certain degree of similarity as well as differentiation between the cross-section evidence on Korea's manufacturing industries and that on the U.S. and Japanese industries. As for the similarities, we can find positive and significant effects on technical efficiency of relative size of production and the extent of specialization in production, and negative and significant effect of the variations in capital-labor ratio within industries. The curvature influence of concentration ratio on technical efficiency is also confirmed in the Korean case. There are differences, too. We cannot find any significant effects of capital vintage, R&D and foreign competition on technical efficiency, all of which were shown to be robust determinants of technical efficiency in the U.S. case. We note, however, that the variables measuring capital vintage effect, R&D and the degree of foreign competition in Korean markets are suspected to suffer from serious measurement errors incurred in data collection and/or conversion of industrial classification system into the KSIC (Korea Standard Industrial Classification) system. Thus, we are reluctant to accept the findings on the effects of these variables as definitive conclusions on Korea's industrial organization. Another finding that interests us is that the cross-industry evidence becomes consistently strong when we use the efficiency estimates based on gross output instead of value added, which provides us with an ex post empirical criterion to choose an output measure between the two in estimating the production frontier. We also conduct exploratory analyses on the stability of the estimates of technical efficiency in Korea's manufacturing industries. Though the method of testing stability employed in this paper is never a complete one, we cannot find strong evidence that our efficiency estimates are stable over time. The outcome is both surprising and disappointing. We can also show that the instability of technical efficiency over time is partly explained by the way we constructed our measures of technical efficiency. To the extent that our efficiency estimates depend on the shape of the empirical distribution of plants in the input-output space, any movements of the production frontier over time are not reflected in the estimates, and possibilities exist of associating a higher level of technical efficiency with a downward movement of the production frontier over time, and so on. Thus, we find that efficiency measures that take into account not only the distributional changes, but also the shifts of the production frontier over time, increase the extent of stability, and are more appropriate for use in a dynamic context. The remaining portion of the instability of technical efficiency over time is not explained satisfactorily in this paper, and future research should address this question.

  • PDF

A Study on Development of Evaluation Indicator for Golf Course User's Preference (골프장 이용자 선호도 평가지표 개발)

  • Seok, Young-Han;Moon, Seok-Ki;Lee, Eun-Yeob
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.4
    • /
    • pp.25-34
    • /
    • 2010
  • This study was conducted to develop evaluation indicators to improve athletic performance and operational management of golf courses and the results of the research are as follows. Through theoretical research and a preliminary professional survey, 15 on-going evaluations of golf course composition and operational management and 55 sub-evaluation indices were rejected while 10 on-going evaluations and 52 sub-evaluation indicators were reconfigured as final for environmental-friendliness, level of member services, level of human service of game personnel, difficulties of course, management level of the course, fairness of operational management, accessibility and location characteristic, traditions and ambiance of the golf club, quality of course, and course layout. When analyzing the important decision factors in golf course user preference evaluation indicators, the following contributed in the order of higher to lower contributions: the management level of the course, excellence of the course, level of human services for personnel, course layout and environmental-friendliness. When identifying the path coefficient of golf course evaluation indicators, the curvature of a hole and the length of the course had a causal effect on the 'course layout' section. Tournament facilities and various shot values had a causal relationship with 'excellence of the course', in the order of higher to lower, and convenience of waiting and fair allocation of reservations for 'fairness of operational management'. The history of the golf course and its environmental characteristics, history and culture of the region have relatively higher causal effects on 'traditions of the golf club' and geographical conditions on 'accessibility and location characteristics', pesticide and fertilizer usage and water pollution on 'environmental-friendliness', and member benefit and kindness of employees on 'level of member services'. The kindness and expertise of the game personnel had a relatively higher causal effect on the 'level of human services of game personnel', the location of tenning area, and location of OB and hazards on 'difficulties of course', and rough conditions and obstacles management on 'management level of the course'. There is a need to complete a systematic evaluation index system for golf course user preferences through future studies for a more detailed assessment, as well as a process to verify these evaluation indicators by application to domestic and international golf courses.

Surrogate Model-Based Global Sensitivity Analysis of an I-Shape Curved Steel Girder Bridge under Seismic Loads (지진하중을 받는 I형 곡선거더 단경간 교량의 대리모델 기반 전역 민감도 분석)

  • Jun-Tai, Jeon;Hoyoung Son;Bu-Seog, Ju
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.976-983
    • /
    • 2023
  • Purpose: The dynamic behavior of a bridge structure under seismic loading depends on many uncertainties, such as the nature of the seismic waves and the material and geometric properties. However, not all uncertainties have a significant impact on the dynamic behavior of a bridge structure. Since probabilistic seismic performance evaluation considering even low-impact uncertainties is computationally expensive, the uncertainties should be identified by considering their impact on the dynamic behavior of the bridge. Therefore, in this study, a global sensitivity analysis was performed to identify the main parameters affecting the dynamic behavior of bridges with I-curved girders. Method: Considering the uncertainty of the earthquake and the material and geometric uncertainty of the curved bridge, a finite element analysis was performed, and a surrogate model was developed based on the analysis results. The surrogate model was evaluated using performance metrics such as coefficient of determination, and finally, a global sensitivity analysis based on the surrogate model was performed. Result: The uncertainty factors that have the greatest influence on the stress response of the I-curved girder under seismic loading are the peak ground acceleration (PGA), the height of the bridge (h), and the yield stress of the steel (fy). The main effect sensitivity indices of PGA, h, and fy were found to be 0.7096, 0.0839, and 0.0352, respectively, and the total sensitivity indices were found to be 0.9459, 0.1297, and 0.0678, respectively. Conclusion: The stress response of the I-shaped curved girder is dominated by the uncertainty of the input motions and is strongly influenced by the interaction effect between each uncertainty factor. Therefore, additional sensitivity analysis of the uncertainty of the input motions, such as the number of input motions and the intensity measure(IM), and a global sensitivity analysis considering the structural uncertainty, such as the number and curvature of the curved girders, are required.

Effects of Depth and Duration of Flooding on Growth and Yield at Transplanting Stages in Tomato(Lycopersicon esculentum). (토마토(Lycopersicon esculentum)의 이식기(移植期) 침수(浸水) 처리(處理)에 따른 생육(生育) 반응(反應))

  • Guh, Ja-Ock;Roh, Sang-Eun;Kuk, Yong-In;Chon, Sang-Uk;Lee, Young-Man;Oh, Yun-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.7-13
    • /
    • 1997
  • Tomatoes are flooded differently 0, 5, 10 and 15 ㎝, according to the developing stages such as transplanting stage under the condition of green house. Along with this, they are treated according to the time condition such as 6, 12, 24, 48 and 120 hours. The results obtained are summarized as follows. As the depth of flooding got deeper and the hours got longer, plant height, number of leaves, shoot and root decreased significantly. Flowering was possible for 24 hours in the flooding of 0 ㎝, for 6 hours in $5{\sim}10$ ㎝, but not possible after 6 hours in 15 ㎝. Without regard to the depth of flooding, adventitious root came into being before or after 48 hours of the treatment. Root activity diminished gradually as hours of treatment went by, but diminished rapidly over the depth of 5 ㎝. Chlorophyll content decreased similarly as in the case of root activity. Diffusion resistance of stomata cell increased as hours of treatment passed and depth increased. Photosynthesis and respiration diminished according as the hours and depth of treatment increased. Respiration diminished a little gradually but photosynthesis weakened greatly as the depth of treatment became greater and after 48 hours of treatment. Diseases occurred remarkably in proportion to the depth of treatment and the increase of hours. The possibility of preventing by means of insecticide treatment showed the same tendency as in the seedling stage. But its effect was not significant. After 120 hours yields could not be expected because tomatoes died without regard to the depth of flooding. Instead of the depth, numbers of fruits per plant decrease of individuals or variation of average weight of a fruit was recognized. Especially average weight increased in accordance with the increase of the depth. There was positive correlation between all the characters, such as plant height, number of leaves, fresh weight, chlorophyll content, root activity and yield traits, but negative correlation between these and epinastic curvature, diffusion resistance and adventitious root.

  • PDF

EFFECT OF CROSS-SECTIONAL AREA OF 6 NICKEL-TITANIUM ROTARY INSTRUMENTS ON THE FATIGUE FRACTURE UNDER CYCLIC FLEXURAL STRESS: A FRACTOGRAPHIC ANALYSIS (반복 굽힘 스트레스 하에서 전동식 니켈-티타늄 파일의 단면적의 크기가 피로파절에 미치는 영향 : 파절역학 분석)

  • Hwang, Soo-Youn;Oh, So-Ram;Lee, Yoon;Lim, Sang-Min;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.5
    • /
    • pp.424-429
    • /
    • 2009
  • This study aimed to assess the influence of different cross-sectional area on the cyclic fatigue fracture of Ni-Ti rotary files using a fatigue tester incorporating cyclical axial movement. Six brands of Ni-Ti rotary files (ISO 30 size with. 04 taper) of 10 each were tested: Alpha system (KOMET), HeroShaper (MicroMega), K3 (SybronEndo), Mtwo (VDW), NRT (Mani), and ProFile (Dentsply). A fatigue-tester (Denbotix) was designed to allow cyclic tension and compressive stress on the tip of the instrument. Each file was mounted on a torque controlled motor (Aseptico) using a 1:20 reduction contra-angle and was rotated at 300 rpm with a continuous, 6 mm axial oscillating motion inside an artificial steel canal. The canal had a $60^{\circ}$ angle and a 5 mm radius of curvature. Instrument fracture was visually detected and the time until fracture was recorded by a digital stop watch. The data were analyzed statistically. Fractographic analysis of all fractured surfaces was performed to determine the fracture modes using a scanning electron microscope. Cross-sectional area at 3 mm from the tip of 3 unused Ni-Ti instruments for each group was calculated using Image-Pro Plus (Imagej 1.34n, NIH). Results showed that NRT and ProFile had significantly longer time to fracture compared to the other groups (p < .05). The cross-sectional area was not significantly associated with fatigue resistance. Fractographycally, all fractured surfaces demonstrated a combination of ductile and brittle fracture. In conclusion, there was no significant relationship between fatigue resistance and the cross-sectional area of Ni-Ti instruments under experimental conditions.

Landslide Susceptibility Mapping Using Deep Neural Network and Convolutional Neural Network (Deep Neural Network와 Convolutional Neural Network 모델을 이용한 산사태 취약성 매핑)

  • Gong, Sung-Hyun;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1723-1735
    • /
    • 2022
  • Landslides are one of the most prevalent natural disasters, threating both humans and property. Also landslides can cause damage at the national level, so effective prediction and prevention are essential. Research to produce a landslide susceptibility map with high accuracy is steadily being conducted, and various models have been applied to landslide susceptibility analysis. Pixel-based machine learning models such as frequency ratio models, logistic regression models, ensembles models, and Artificial Neural Networks have been mainly applied. Recent studies have shown that the kernel-based convolutional neural network (CNN) technique is effective and that the spatial characteristics of input data have a significant effect on the accuracy of landslide susceptibility mapping. For this reason, the purpose of this study is to analyze landslide vulnerability using a pixel-based deep neural network model and a patch-based convolutional neural network model. The research area was set up in Gangwon-do, including Inje, Gangneung, and Pyeongchang, where landslides occurred frequently and damaged. Landslide-related factors include slope, curvature, stream power index (SPI), topographic wetness index (TWI), topographic position index (TPI), timber diameter, timber age, lithology, land use, soil depth, soil parent material, lineament density, fault density, normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used. Landslide-related factors were built into a spatial database through data preprocessing, and landslide susceptibility map was predicted using deep neural network (DNN) and CNN models. The model and landslide susceptibility map were verified through average precision (AP) and root mean square errors (RMSE), and as a result of the verification, the patch-based CNN model showed 3.4% improved performance compared to the pixel-based DNN model. The results of this study can be used to predict landslides and are expected to serve as a scientific basis for establishing land use policies and landslide management policies.