• Title/Summary/Keyword: Curvature Deformation

Search Result 274, Processing Time 0.049 seconds

Numerical Analysis on the Stress and Deformation Behavior Characteristics of Flexible Joint for a Gas Pipe (가스배관용 플렉시블 조인트의 응력 및 변형거동특성에 관한 수치적 연구)

  • Kim, Chung-Kyun;Kim, Kyung-Seob
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.4
    • /
    • pp.39-43
    • /
    • 2011
  • In this study, the stress and deformation behavior characteristics of a flexible joint for a gas pipe have been analyzed by a finite element method. These characteristic results may investigate the strength safety analysis of a flexible joint, which is composed by a spiral corrugation pipe or a rectangular corrugation model and a plane pipe. The FEM computed results show that an optimized spiral corrugation pipe model is a inclined angle of $4.7^{\circ}$ and a corrugation height of 1.5mm. And also, a rectangular corrugation pipe model of $90^{\circ}$ is recommended in strength safety rather than a spiral corrugation pipe with an inclined angle. Thus, a corrugated pipe for an increased strength safety is to recommend a reduced pitch and curvature radius of an inclined corrugation.

A Study on Behavior of Anisotrpic Circular Cylingdrical Shell including Large Deformation Effects (대변형 효과를 고려한 비등방성 원통형 쉘의 거동에 관한 연구)

  • Chun, Kyoung Sik;Son, Byung Jik;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.489-497
    • /
    • 2002
  • Nonlinear behavior and large deformation cannot be analyzed using techniques based on linear theory. Nonetheless, they are emerging as gradually huge and complex structures. In addition, the optimum design of structure is necessary in the development of high-performance computation and numerical methods. as well as stricter design-criterion. Therefore, the structural problems in engineering that are limited to the linear region must be extended to the nonlinear region. Likewise, structural behavior must be accurately analyzed. In turn, this requires considering the expected problems beforehand. Only then can an efficient, economical, and optimized structure be designed. This paper presents the solution of the geometrical nonlinear problem of anisotropic cylindrical shell. The characteristics of the geometrical nonlinear behavior of anisotropic circular cylindrical shells may vary according to several causes. e.g., change of fibers, curvature in the circumferential direction, subtended angle, aspect, etc. Parametric studies were conducted to determine the effect of factors on the large deflection behavior of laminated shells, with interesting observations.

3-Node Relaxed-Equiribrium Hybrid-Mixed Curved Beam Elements (완화된 평형조건을 만족하는 응력함수를 가지는 3절점 혼합 곡선보요소)

  • Kim, Jin-Gon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.153-160
    • /
    • 2008
  • In this study, we propose a new three-node hybrid-mixed curved beam element with the relaxed-equiribrium stress functions for static analysis. The proposed element considering shear deformation is based on the Hellinger-Reissner variational principle. The stress functions are carefully chosen from three important considerations: (i) all the kinematic deformation modes must be suppressed, and (ii) the spurious constraints must be removed in the limiting behaviors via the field-consistency, and (iii) the relaxed equilibrium conditions could be incorporated because it might be impossible to select the stress functions and parameters to fully satisfy both the equiribrium conditions and the suppression of kinematic deformation modes in the three-node curved beam hybrid-mixed formulation. Numerical examples confirm the superior and stable behavior of the proposed element regardless of slenderness ratio and curvature. Besides, the proposed element shows the outstanding performance in predicting the stress resultant distributions.

A Study for the Stability Investigation of Three Parallel Tunnels Using Scaled Model Tests (삼병렬 터널의 안정성 검토를 위한 모형실험 연구)

  • Kim, Jong-Woo;Bae, Woo-Seok
    • Tunnel and Underground Space
    • /
    • v.18 no.4
    • /
    • pp.300-311
    • /
    • 2008
  • In this study, scaled model tests were performed to investigate the stability of three parallel tunnels. Seven types of test models which had respectively different pillar widths, tunnel sectional shapes, support conditions and ground conditions were experimented, where crack initiating pressures and deformation behaviors around tunnels were investigated. In order to evaluate the effect of pillar widths on stability, various models were experimented. As results, the models with shallower pillar widths proved to be unstable because of lower crack initiating pressures and more tunnel convergences than the models with thicker pillar widths. In order to find the effect of tunnel sectional shape on stability, the models with arched, semi-arched and rectangular tunnels were experimented. Among them rectangular tunnel model was the most unstable, where the arched tunnel model with small radius of roof curvature was more stable than semi-arched one. The model with rockbolt showed higher crack initiating pressure and less roof lowering than the unsupported model. The deformation behaviors of tunnels in the anisotropic ground model were quite different from those in the isotropic ground model. Futhermore, the results of FLAC analysis were qualitatively coincident with the experimental results.

Damage and deformation of new precast concrete shear wall with plastic damage relocation

  • Dayang Wang;Qihao Han;Shenchun Xu;Zhigang Zheng;Quantian Luo;Jihua Mao
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.385-403
    • /
    • 2023
  • To avoid premature damage to the connection joints of a conventional precast concrete shear wall, a new precast concrete shear wall system (NPSW) based on a plastic damage relocation design concept was proposed. Five specimens, including one monolithic cast-in-place concrete shear wall (MSW) as a reference and four NPSWs with different connection details (TNPSW, INPSW, HNPSW, and TNPSW-N), were designed and tested by lateral low-cyclic loading. To accurately assess the damage relocation effect and quantify the damage and deformation, digital image correlation (DIC) and conventional data acquisition methods were used in the experimental program. The concrete cracking development, crack area ratio, maximum residual crack width, curvature of the wall panel, lateral displacement, and deformed shapes of the specimens were investigated. The results showed that the plastic damage relocation design concept was effective; the initial cracking occurred at the bottom of the precast shear wall panel (middle section) of the proposed NPSWs. The test results indicated that the crack area ratio and the maximum residual crack width of the NPSWs were less than those of the MSW. The NPSWs were deformed continuously; significant distortions did not occur in their connection regions, demonstrating the merits of the proposed NPSWs. The curvatures of the middle sections of the NPSWs were lower than that of the MSW after a drift ratio of 0.5%. Among the NPSWs, HNPSW demonstrated the best performance, as its crack area ratio, concrete damage, and maximum residual crack width were the lowest.

Construction of Correlation between Basic Soil Properties and Deformation Modulus of Trackbed Soils Based on Laboratory and Field Mechanical Tests (역학적 실내외 시험에 의한 철도궤도 상부노반용 흙재료의 기본물성과 변형계수 상관성 평가)

  • Park, Jae Beom;Choi, Chan Yong;Ji, Sang Hyun;Lim, Sang Jin;Lim, Yu Jin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.204-212
    • /
    • 2016
  • The soils used as trackbed in Korea are selected using USCS utilizing basic soil properties such as Grain Size Distribution(GSD), % passing of #200 sieve ($P_{200}$), % passing of #4 sieve ($P_4$), Coefficient of uniformity ($C_u$), and Coefficient of curvature ($C_c$). Degree of compaction of the soils adapted in the code by KR should be evaluated by maximum dry density (${\gamma}_{d-max}$) and deformation modulus $E_{v2}$. The most important influencing factor that is critical to stability and deformation of the compacted soils used as trackbed is stiffness. Thus, it is necessary to construct a correlation between the modulus and the basic soil properties of trackbed soil in order to redefine a new soil classification system adaptable only to railway construction. To construct the relationship, basic soil test data is collected as a database, including GSD, maximum dry unit weight (${\gamma}_{d-max}$), OMC, $P_{200}$, $P_4$, $C_u$, $C_c$, etc.; deformation modulus $E_{v2}$ and $E_{vd}$ are obtained independently by performing a Repeated Plated Bearing Test (RPBT) and Light Weight Deflectometer Test (LWDT) for ten different railway construction sites. A linear regression analysis is performed using SPSS to obtain the relationship between the basic soil properties and the deformation modulus $E_{v2}$ and $E_v$. Based on the constructed relationship and the various obtained mechanical test data, a new soil classification system will be proposed later as a guideline for the design and construction of trackbed foundation in Korea.

A COMPARATIVE STUDY ON THE CANAL CONFIGURATION AFTER SHAPING BY PROFILE, PROTAPERTM AND K-FLEXOFILE IN SIMULATED CANALS WITH DIFFERENT ANGLES OF CURVATURE (ProFile, ProTaperTM K-Flexofile 근관 성형시 근관의 만곡도에 따른 근관 형태 변화 비교연구)

  • Lee, Bo-Kum;Kim, Dong-Jun;Hwang, Yun-Chan;Hwang, In-Nam;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.4
    • /
    • pp.294-302
    • /
    • 2005
  • The purpose of this study was to evaluate the canal configuration after shaping by ProFile. ProTaper and K-Flexofile in simulated resin canals with different angles of curvature. Three types of instruments were used: ProFile. ProTaper. K-Flexofile. Simulated root canals. which were made of epoxy resin. were prepared by ProFile. ProTaper with rotary instrument using a crown-down pressureless technique. and hand instrumentation was performed by K-Flexofile using a step-back technique. All simulated. canals were prepared up to size 25 file at end-point of preparation. Pre and post instrumentation images were recorded with Scanner. Assessment of canal shape was completed with Image Analysis program. Measurements were made at 1. 2. 3. 4. 5. 6. 7. 8. 9 and 10mm from the apex. At each level. outer canal width. inner canal width. total canal width. and amount of transportation from original axis were recorded. Instrument deformation and fracture were recorded. Data were analyzed by means of one-way ANOVA analysis of variance and the Sheffe's test. The result was that ProFile and ProTaper maintain original canal shape regardless of the increase of angle of curvature than K-Flexofile. ProFile show significantly less canal transportation and maintained original canal shape better than ProTaper.

Study on Dynamic Characteristics of Curved Bellows (곡선형 벨로우즈의 동적특성 분석)

  • Hwang, J.P.;Kim, J.G.;Park, Y.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.2
    • /
    • pp.29-34
    • /
    • 2008
  • Bellows is widely used in many industrial fields as it provides a relatively simple means of absorbing mechanical shock, vibration and thermal deformation with flexibility. In this study, the inherent dynamic characteristics of curved bellows are numerically studied according to the variation of angle, curvature and crest density, etc. For these numerical studies, a parametric finite element modelling program of curved bellows is constructed using ANSYS APDL. The validity of numerical results obtained from ANSYS software is experimentally verified using the test model made by RP machine SLA 5000.

  • PDF

Active control of delaminated composite shells with piezoelectric sensor/actuator patches

  • Nanda, Namita;Nath, Y.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.211-228
    • /
    • 2012
  • Present study deals with the development of finite element based solution methodology to investigate active control of dynamic response of delaminated composite shells with piezoelectric sensors and actuators. The formulation is based on first order shear deformation theory and an eight-noded isoparametric element is used. A coupled piezoelectric-mechanical formulation is used in the development of the constitutive equations. For modeling the delamination, multipoint constraint algorithm is incorporated in the finite element code. A simple negative feedback control algorithm coupling the direct and converse piezoelectric effects is used to actively control the dynamic response of delaminated composite shells in a closed loop employing Newmark's time integration scheme. The validity of the numerical model is demonstrated by comparing the present results with those available in the literature. A number of parametric studies such as the locations of sensor/actuator patches, delamination size and its location, radius of curvature to width ratio, shell types and loading conditions are carried out to understand their effect on the transient response of piezoceramic delaminated composite shells.

Bending performance of laminated sandwich shells in hyperbolic paraboloidal form

  • Alankaya, Veysel;Erdonmez, Cengiz
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.337-346
    • /
    • 2017
  • Sandwich shells made of composite materials are the main focus on recent literature parallel to the requirements of industry. They are commonly chosen for the modern engineering applications which require moderate strength to weight ratio without dependence on conventional manufacturing techniques. The investigations on hyperbolic paraboloidal formed sandwich composite shells are limited in the literature contrary to shells that have a number of studies, consisting of doubly curved surfaces, arbitrary boundaries and laminations. Because of the lack of contributive data in the literature, the aim of this study is to present the effects of curvature on hyperbolic paraboloidal formed, layered sandwich composite surfaces that have arbitrary boundary conditions. Analytical solution methodology for the analyses of stresses and deformations is based on Third Order Shear Deformation Theory (TSDT). Double Fourier series, which are specialized for boundary discontinuity, are used to solve highly coupled linear partial differential equations. Numerical solutions showing the effects of shell geometry are presented to provide benchmark results.