• Title/Summary/Keyword: Current-unbalance

Search Result 263, Processing Time 0.022 seconds

An Integrated Compensation Algorithm for PCC Voltage Fluctuation and Unbalance with Variable Limit of Positive and Negative Sequence Currents

  • Im, Ji-Hoon;Song, Seung-Ho;Cho, Sung-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.751-760
    • /
    • 2017
  • This paper proposes a point of common coupling (PCC) voltage compensation algorithm using a current limitation strategy for use in distributed generation (DG). The proposed strategy maintains the PCC voltage by prioritizing currents when an output current reference is larger than the current capacity of the power condition system (PCS) of the DG. With this strategy, the DG outputs the active current, reactive current, and the negative sequence current. The DG uses the reactive current for maintaining the PCC voltage within a normal range; the negative sequence current is used for reducing the PCC voltage unbalance. The proposed method was verified using PSIM simulation and experimental results.

A Study on the Characteristics for Power Capacitor under the Voltage Unbalance Operation (불평형 전압 운전시의 역률보상용 커패시터 특성 연구)

  • Kim, Il-Jung;Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.1
    • /
    • pp.36-40
    • /
    • 2008
  • Most of the low-voltage feeder are designed with approximately balanced and connected at the three phase four wire systems. However, Most of the power distribution systems' load which is composed of single or three phase are unbalanced by generating load unbalance. Unbalanced current will draw a highly unbalanced voltage. The power factor of an induction motor at rated operation is between 25 and 90%, depending on the size and speed of the motor. However, many induction motors operate below the nominal rating, resulting in poor power factor. This condition needs power factor improvement. Addition of power capacitor at the motor terminal may draw to stress due to voltage unbalance. This paper presents operation characteristics on steady states of a three-phase induction motor under unbalanced voltages with power capacitor. The existence of voltage unbalance have an effect on stress of power capacitor.

Analysis on the Operation Characteristics of induction motor by asymmetric voltage unbalance (비대칭 전압불평형에 의한 유도전동기의 동작특성 해석)

  • Kim, Jong-Gyeum;Lee, Eun-Woong;Jeong, Jong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.110-112
    • /
    • 2003
  • This paper describes a detailed performance of induction motor with asymmetric voltage unbalance generated at the customer distribution system. The simulation results show that the change of current and torque, with the increase of unbalance factor, are more larger and has an important effect on load system.

  • PDF

Voltage Unbalance Factor for Phase and Line Voltage (상전압 및 선간전압에 대한 불평형율)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Dong-Ju;Lee, Jong-Han;Lee, Eun-Wong;Park, Jong-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.74-77
    • /
    • 2005
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, voltage unbalance is generated at the user's 3-phase 4-wire distribution systems with single & three phase. Voltage unbalance is mainly affected by load system rather than power system. Unbalanced voltage will draws a highly unbalanced current and results in the temperature rise and the low output characteristics at the machine. It is necessary to analyse correct voltage unbalance factor for reduction of side effects in the industrial sites. Voltage unbalance is usually defined by the maximum percent deviation of voltages from their average value, by the method of symmetrical components or by the expression in a more user-friendly form which requires only the three line voltage readings. If the neutral point is moved at the 3-phase 4-wire system by the unbalanced load, by the conventional analytical method, line and phase voltage unbalance leads to different results due to zero-sequence component. This paper presents a new analytical method for phase and line voltage unbalance factor in 4-wire systems. Two methods indicate exact results.

  • PDF

Reduction of Current Harmonic Occurred form between Uninterruptible Powers Supply and Rectifier Load (정류기 부하와 무정전전원장치 사이에 발생되는 Current Harmonic 저감)

  • 곽철훈;반한식;최규하;목형수
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.41-44
    • /
    • 1999
  • The main purpose of the UPS is to supply independent and stable power to connected equipment. In installing and operating the UPS system, songle module, three phase UPS in more benefit than multi module, songle phase UPS in the point of volume and cost. However, when supplying Rectifier with output power form three phase UPS, by connecting auto-transformer, occurred harmonic and ripple current makes output filter damaged and leads to nonlinear current coasted by unbalance load. Therefor, in this paper the aim of concentring compound-wound transformer and harmonic filter is supplying liner current by reducing harmonic and ripple current and improving unbalance in voltage and distortion in current wave.

  • PDF

A Simplified Control Algorithm for Three-Phase, Four-Wire Unified Power Quality Conditioner

  • Singh, Bhim;Venkateswarlu, P.
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.91-96
    • /
    • 2010
  • In this paper, a simplified control algorithm for a three-phase, four-wire unified power quality conditioner (UPQC) is presented to compensate for supply voltage distortions/unbalance, supply current harmonics, the supply neutral current, the reactive power and the load unbalance as well as to maintain zero voltage regulation (ZVR) at the point of common coupling (PCC). The UPQC is realized by the integration of series and shunt active filters (AFs) sharing a common dc bus capacitor. The shunt AF is realized using a three-phase, four leg voltage source inverter (VSI) and the series AF is realized using a three-phase, three leg VSI. A dynamic model of the UPQC is developed in the MATLAB/SIMULINK environment and the simulation results demonstrating the power quality improvement in the system are presented for different supply and load conditions.

Development of a hard bearing type balancing machine (강성 베어링형 밸런실 장치의 개발)

  • 권이석;이동환;박중윤;홍성욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.773-777
    • /
    • 1994
  • This paper is devoted to the development and performance evaluation of a hard bearing type balancing machine for rigid rotors. The pedestals of the balancing machine are designed to be rigid to be rigid enough to enable the balancing to operate far below the fundamental critical speed. The force measuring method is implemented to the balancing machine. The forces due to unbalance are measured through load cell that are attached to the pedestals. A helical coupling is used for transmitting the driving force from an AC servo motor to the rotor to be balanced. The experimental results show that the current hard bearing type balancing machine can indicate the presence of unbalance beyond 1 .mu. m in specific unbalance unit. The limitation of the current balancing machine is due to the coupling that is likely to make inconsistent offset errors everytime the rotor is connected to the machine.

  • PDF

Characteristics Analysis of Induction Motor by Operation of Non-linear Loads under the 3-Phase 4-Wire Grid System (3상 4선식에시 비선형 부하의 운전시 유도전동기의 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.8
    • /
    • pp.54-62
    • /
    • 2006
  • Voltage unbalance will be generated by the load unbalance operation such as combination operation of single & three phase load and current unbalance will be more severe by the deteriorated voltage quality. Under the these unbalance conditions, all power electronic converters used in different types of electronic systems can increase harmonic disturbances by injecting harmonic currents directly into the feeder grid of three phase 4-wire. Harmonic current may cause torque to decrease. it may also overheat or become noisy and torque oscillation in the rotor can lead to mechanical resonance and vibration. This paper presents a scheme on the characteristics of induction motor under the combination of linear & non-linear loads at the three phase 4-wire power distribution system by the unbalance and harmonic components. It was able to confirm that the number of torque pulsation decreased and torque ripple values increased by the harmonics that reduction was difficult by five harmonics filters at additional driving time of single-phase non-linear load.

Properties of a Hybrid Type Superconducting Fault Current Limiter using YBa2Cu3O7 Films (YBa2Cu3O7 박막을 이용한 하이브리드형 초전도 사고전류제한기의 특성)

  • Choi, Hyo-Sang;Cho, Yong-Sun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.391-397
    • /
    • 2006
  • We present investigations of a hybrid type superconducting fault current limiter (SFCL), which consists of transformers and resistive superconducting elements. The secondary windings of the transformer were separated into several electrically isolated circuits and linked inductively with each other by mutual flux, each of which has a superconducting current limiting element of $YBa_2Cu_3O_7$ (YBCO) stripes as a current limiting element. Simple connection in series of the SFCL elements tends to produce ill-timed quenching because of power dissipation unbalance between SFCL elements. Both electrical isolation and mutual flux linkage of the elements provides a solution to power dissipation unbalance, inducing simultaneous quench and current redistribution of the YBCO films. This design enables to increase the voltage rating of SFCL with given YBCO stripes.

Islanding Detection Method for Inverter-Based Distributed Generation through Injection of Second Order Harmonic Current

  • Lee, Yoon-Seok;Yang, Won-Mo;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1513-1522
    • /
    • 2018
  • This paper proposes a new islanding detection method for inverter-based distributed generators by continuously injecting a negligible amount of 2nd order harmonic current. The proposed method adopts a proportional resonant (PR) controller for the output current control of the inverter, and a PR filter to extract the 2nd order harmonic voltage at the point of common coupling (PCC). The islanding state can be detected by measuring the magnitude ratio of the 2nd order harmonic voltage to the fundamental voltage at the PCC by injecting a 2nd order harmonic current with a 0.8% magnitude. The proposed method provides accurate and fast detection under grid voltage unbalance and load unbalance. The operation of the proposed method has been verified through simulations and experiments with a 5kW hardware set-up, considering the islanding test circuit suggested in UL1741.