• Title/Summary/Keyword: Current-control algorithm

Search Result 1,403, Processing Time 0.037 seconds

Adaptive Digital Predictive Peak Current Control Algorithm for Buck Converters

  • Zhang, Yu;Zhang, Yiming;Wang, Xuhong;Zhu, Wenhao
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.613-624
    • /
    • 2019
  • Digital current control techniques are an attractive option for DC-DC converters. In this paper, a digital predictive peak current control algorithm is presented for buck converters that allows the inductor current to track the reference current in two switching cycles. This control algorithm predicts the inductor current in a future period by sampling the input voltage, output voltage and inductor current of the current period, which overcomes the problem of hardware periodic delay. Under the premise of ensuring the stability of the system, the response speed is greatly improved. A real-time parameter identification method is also proposed to obtain the precision coefficient of the control algorithm when the inductance is changed. The combination of the two algorithms achieves adaptive tracking of the peak inductor current. The performance of the proposed algorithms is verified using simulations and experimental results. In addition, its performance is compared with that of a conventional proportional-integral (PI) algorithm.

Control Algorithm Development for an Arc Current Interruption (아크 전류 차단을 위한 제어알고리즘 개발)

  • 반기종;김낙교
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.3
    • /
    • pp.166-172
    • /
    • 2004
  • Arc Fault Current is an electric discharge which is occurred in two opposite electrode. In this Paper, arc current control algorithm is designed for the interruption of arc fault current which is occurred in the low voltage network. This arc Is one of the main causes of electric fire. Arc fault in electrical network has the characteristics of low current, high impedance and high frequency. Conventional control algorithm does not have the arc current interrupt function. Hence, Control algorithm of arc current is designed for the interruption of arc fault current which has the modified arc characteristics.

High precision Gating Algorithm for Predictive Current Control of Phase Controlled Rectifier (위상제어 정류기의 예측전류제어를 위한 새로운 고정밀 게이팅 알고리즘)

  • 정세종;송승호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.206-211
    • /
    • 2004
  • In phase controlled rectifier, it's been known that a fast response is achieved by predictive current control without any overshoot. The frequent sampling period is essential to improve the firing accuracy in conventional predict current control. However, improving the firing accuracy if difficult to reduce the period of sampling efficiently because current sampling and predictive current control is carried out in every period and the ON-OFF current control is performed by comparing two different one. To improve the firing accuracy at the predictive current control, the calculated firing angle is loaded into the high-accuracy hardware timer. So the calculation of exact crossing point between the predictive and actual current is the most important. In this paper, the flow chart for proposed firing angle calculation algorithm is obtained for the fastest current control performance in transient state. The performance of proposed algorithm is verified through simulations and experiments.

DCM Frequency Control Algorithm for Multi-Phase DC-DC Boost Converters for Input Current Ripple Reduction

  • Joo, Dong-Myoung;Kim, Dong-Hee;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2307-2314
    • /
    • 2015
  • In this paper, a discontinuous conduction mode (DCM) frequency control algorithm is proposed to reduce the input current ripple of a multi-phase interleaved boost converter. Unlike conventional variable duty and constant frequency control, the proposed algorithm controls the switching frequency to regulate the output voltage. By fixing the duty ratio at 1/N in the N-phase interleaved boost converter, the input current ripple can be minimized by ripple cancellation. Furthermore, the negative effects of the diode reverse recovery current are eliminated because of the DCM characteristic. A frequency controller is designed to employ the proposed algorithm considering the magnetic permeability change. The proposed algorithm is analyzed in the frequency domain and verified by a 600 W three-phase boost converter prototype that achieved 57% ripple current reduction.

Operation of Brushless DC Motor using the Adaptive hysteresis bandwidth control algorithm (적응 Hysteresis band폭 제어 알고리즘을 이용한 Brushless DC Motor의 운전)

  • Cho, Kye-Seok;Kim, Kwang-Yeon;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.171-174
    • /
    • 1991
  • Among the various PWM methods, the hysteresis-band current control PWM method is popularly used because of its simplicity of implementation, fast response characteristics and inherent peak current limiting capability. However, the current control PWM method with a fixed hysteresis-band has the disadvantage that switching frequency decreases and current ripple is high as the increasing of back-EMF. As a result, load current contains excess harmonics. This paper describes a adaptive hysteresis-bandwidth control algorithm so as to maintain the average switching frequency constant and decrease the current ripple where the hysteresis bandwidth is derived as a relation with the switching frequency. This control algorithm is applied to the surface-type brushless DC motor with separated winding and using the computer simulation, the validity of its algorithm is proved.

  • PDF

A study on DSP based power analyzing and control system by analysis of 3-dimensional space current co-ordinates (3차원 전류좌표계 해석법에 의한 DSP 전력분석 제어장치에 관한 연구)

  • 임영철;정영국;나석환;최찬학;장영학;양승학
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.543-552
    • /
    • 1996
  • The goal of this paper is to developed a DSP based power analyzing and control system by 3-Dimensional (3-D) space current co-ordinates. A developed system is made up of 486-PC and DSP (Digital Signal Processor) board, Active Power Filter, Non-linear thyristor load, and Power analyzing and control program for Windows. Power is analyzed using signal processing techniques based on the correlation between voltage and current waveforms. Since power analysis algorithm is performed by DSP, power analysis is achieved in real-time even under highly dynamic nonlinear loading conditions. Combining control algorithm with power analysis algorithm is performed by DSP, power analysis is achieved in real-time even under highly dynamic nonlinear loading conditions. Combining control algorithm with power analysis algorithm, flexibility of the proposed system which has both power analysis mode and control mode, is greatly enhanced. Non-active power generated while speed of induction motor is controlled by modulating firing angle of thyristor converter, is compensated by Active Power Filter for verifying a developed system. Power analysis results, before/after compensation, are numerically obtained and evaluated. From these results, various graphic screens for time/frequency/3-D current co-ordinate system are displayed on PC. By real-time analysis of power using a developed system, power quality is evaluated, and compared with that of conventional current co-ordinate system. (author). refs., figs. tabs.

  • PDF

Design of neuro-fuzzy for robust control of induction motor (유도전동기의 강인 제어를 위한 뉴로-퍼지 설계)

  • 송윤재;강두영;김형권;안태천
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.454-457
    • /
    • 2004
  • In this paper, control method proposed for effective speed control of the induction motor indirect vector control. For the induction motor drive, indirect vector control scheme that controls torque current and flux current of the stator current independently so that it can have improved dynamics. Also, neuro-fuzzy algorithm employed for torque current control in order to optimal speed control The proposed neuro-fuzzy algorithm can be applied to the precise speed control of an induction motor drive system or the field of any other power systems.

  • PDF

Model Parameter Correction Algorithm for Predictive Current Control of SMPMSM

  • Li, Yonggui;Wang, Shuang;Ji, Hua;Shi, Jian;Huang, Surong
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1004-1011
    • /
    • 2016
  • The inaccurate model parameters in the predictive current control of surface-mounted permanent magnet synchronous motor (SMPMSM) affect the current dynamic response and steady-state error. This paper presents a model parameter correction algorithm based on the relationship between the errors of model parameters and the static errors of dq-axis current. In this correction algorithm, the errors of inductance and flux are corrected in two steps. Resistance is ignored. First, the proportional relations between inductance and d-axis static current errors are utilized to correct the error of model inductance. Second, the flux is corrected by utilizing the proportional relations between flux and q-axis static current errors under the condition that inductance is corrected. An experimental study with a 100 W SMPMSM is performed to validate the proposed algorithm.

Optimal Current Detect MPPT Control of PV System for Robust with Environment Changing (환경변화에 강인한 태양광 발전의 최적전류 MPPT 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.47-58
    • /
    • 2011
  • This paper proposes the optimal current detect(OCD) maximum power point tracking(MPPT) control of photovoltaic(PV) system for robust with environment changing. The output characteristics of the solar cell is a nonlinear and affected by a temperature, the solar radiation and temperature. Conventional MPPT control methods are tracked the maximum power point by constant incremental value. So these methods are slow the response speed and generated the vibration in steady state and cannot track the MPP in environment condition changing. And power loss is generated because of the self-excitation vibration in MPP region. To solve this problem, this paper proposes the novel control algorithm. Proposed algorithm is detected the optimal current in two control region using the output power and current curve. Detected current is used the converter switching for tracking the MPP. Proposed algorithm is compared output power error to conventional algorithm with radiation and temperature changing. In addition, the validity of the algorithm is proved through the output error response characteristics.

Scheme to Improve the Line Current Distortion of PFC Using a Predictive Control Algorithm

  • Kim, Dae Joong;Park, Jin-Hyuk;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1168-1177
    • /
    • 2015
  • This paper presents a scheme to improve the line current distortion of power factor corrector (PFC) topology at the zero crossing point using a predictive control algorithm in both the continuous conduction mode (CCM) and discontinuous conduction mode (DCM). The line current in single-phase PFC topology is distorted at the zero crossing point of the input AC voltage because of the characteristic of the general proportional integral (PI) current controller. This distortion degrades the line current quality, such as the total harmonic distortion (THD) and the power factor (PF). Given the optimal duty cycle calculated by estimating the next state current in both the CCM and DCM, the proposed predictive control algorithm has a fast dynamic response and accuracy unlike the conventional PI current control method. These advantages of the proposed algorithm lower the line current distortion of PFC topology. The proposed method is verified through PSIM simulations and experimental results with 1.5 kW bridgeless PFC (BLPFC) topology.