• Title/Summary/Keyword: Current-balancing

Search Result 268, Processing Time 0.028 seconds

The Real Role of 4,4'-Bis[N-[4-{N,N-bis(3-methylphenyl)amino}phenyl]-N-phenylamino] biphenyl (DNTPD) Hole Injection Layer in OLED: Hole Retardation and Carrier Balancing

  • Oh, Hyoung-Yun;Yoo, Insun;Lee, Young Mi;Kim, Jeong Won;Yi, Yeonjin;Lee, Seonghoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.929-932
    • /
    • 2014
  • We explored interfacial electronic structures in indium tin oxide (ITO)/DNTPD/N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine (NPB) layer stack in an OLED to clarify the real role of an aromatic amine-based hole injection layer, DNTPD. A hole injection barrier at the ITO/DNTPD interface is lowered by 0.20 eV but a new hole barrier of 0.36 eV at the DNTPD/NPB is created. The new barrier at the DNTPD/NPB interface and its higher bulk resistance serve as hole retardation, and thus those cause the operation voltage for the ITO/DNTPD/NPB to increase. However, it improves current efficiency through balancing holes and electrons in the emitting layer.

A Study on the Configuration of BOP and Implementation of BMS Function for VRFB (VRFB를 위한 BOP 구성 및 BMS 기능구현에 관한 연구)

  • Choi, Jung-Sik;Oh, Seung-Yeol;Chung, Dong-Hwa;Park, Byung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.74-83
    • /
    • 2014
  • This paper proposes a study on the configuration of balancing of plant(BOP) and implementation of battery management system(BMS) functions for vanadium redox flow battery(VRFB) and propose a method consists of sensor and required design specifications BOP system configuration. And it proposes an method of the functions implementation and control algorithm of the BMS for flow battery. Functions of BMS include temperature control, the charge and discharge control, flow control, level control, state of charge(SOC) estimation and a battery protection through the sensor signal of BOP. Functions of BMS is implemented by the sensor signal, so it is recognized as a very important factor measurement accuracy of the data. Therefore, measuring a mechanical signal(flow rate, temperature, level) through the BOP test model, and the measuring an electrical signal(cell voltage, stack voltage and stack current) through the VRFB charge-discharge system and analyzes the precision of data in this paper. Also it shows a good charge-discharge test results by the SOC estimation algorithm of VRFB. Proposed BOP configuration and BMS functions implementation can be used as a reference indicator for VRFB system design.

Cell-balancing Algorithm for Paralleled Battery Cells using State-of-Charge Comparison Rule

  • La, Phuong-Ha;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.156-158
    • /
    • 2018
  • The inconsistencies between paralleled battery cells are becoming more considerable issue in high capacity battery applications like electric vehicles. Due to differences in state-of-charge (SOC) and internal resistance within individual cells in parallel, charging or discharging current is not appropriately balanced to each cell in terms of SOC, which may shorten the lifetime or sometimes cause safety issues. In this paper, an intelligent cell-balancing algorithm is proposed to overcome the inconsistency issue especially for paralleled battery cells. In this scheme, SOC information collected in the sub-BMS module is sent to the main-BMS module, where the number of parallel cells to be connected to DC bus is continuously updated based on the suggested SOC comparison rule. To verify the method, operation of the algorithm on 4 paralleled battery cells are simulated on Matlab/Simulink. The simulation result shows that the SOCs of paralleled cells are evenly redistributed. It is expected that the proposed algorithm provides high reliable and prolong the life cycle and working capacity of the battery pack.

  • PDF

The Self-Fault Determination and Restoration Methodology based on the Ethernet Communication (이더넷 통신기반의 자율적 고장 판단 및 복구 방법론 연구)

  • Ko, Yun-Seok;Lee, Seo-Han;Choi, Hyun-Chul;Shin, Jae-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1674-1680
    • /
    • 2009
  • This paper proposes an autonomous fault determination, fault zone isolation and fault restoration strategy based on the ethernet communication as a new attempt to solve the problem the of the existing central control method. In proposed method, The FRTU(Feeder Remote Terminal Unit)s on the feeder determines autonomously where the faulted zone is by exchanging the voltage and current information with neighbor FRTUs based on the network communication, and then separates the faulted zone in an nil-voltage status to make the protective device to reclose successively. In particular, the minimization of outage time and relational load balancing is archived by each interconnection switch which determines autonomously the load zone to be allocated among those zones after the sound outage zones was separated individually. Finally, to show effectiveness of the proposed fault restoration strategy, the several fault cases are simulated for the test distribution system, and the load balancing index of the proposed solution is compared with all of feasible solutions.

Development of Integrated Assembly Process Planning and Scheduling System in Shipbuilding (조선에서의 조립공정계획과 일정계획의 지능형 통합시스템 개발)

  • Cho, Kyu-Kab;Ryu, Kwang-Ryel;Choi, Hyung-Rim;Oh, Jung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.22-35
    • /
    • 1999
  • The block assembly process takes more than half of the total shipbuilding processes. Therefore, it is very important to have a practically useful block assembly process planning system which can build plans of maximum efficiency with minimum man-hours required. However, the process plans are often not readily executable in the assembly shops due to severe imbalance of workloads. This problem arises because the process planning is done on block by block basis in current practice without paying any attention to the load distribution among the assembly shops. this paper presents the development of an automated hull block assembly process planning system which results in the most effective use of production resources and also produces plans that enable efficient time management. If the load balance of assembly shops is to be considered at the time of process planning, the task becomes complicated because of the increased computational complexity. To solve this problem, a new approach is adopted in this research in which the load balancing function and process planning function are iterated alternately providing to each other contexts for subsequent improvement. The result of case study with the data supplied from the shipyard shows that the system developed in this research is very effective and useful.

  • PDF

Metabolic Engineering of Saccharomyces cerevisiae for Redox Balance of Xylose Fermentation

  • Kim, Soo Rin;Jin, Yong-Su
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.4
    • /
    • pp.199-202
    • /
    • 2014
  • The bioconversion of cellulosic biomass hydrolyzates consisting mainly of glucose and xylose requires the use of engineered Saccharomyces cerevisiae expressing a heterologous xylose pathway. However, there is concern that a fungal xylose pathway consisting of NADPH-specific xylose reductase (XR) and $NAD^+$-specific xylitol dehydrogenase (XDH) may result in a cellular redox imbalance. However, the glycerol biosynthesis and glycerol degradation pathways of S. cerevisiae, termed here as the glycerol cycle, has the potential to balance the cofactor requirements for xylose metabolism, as it produces NADPH by consuming NADH at the expense of one mole of ATP. Therefore, this study tested if the glycerol cycle could improve the xylose metabolism of engineered S. cerevisiae by cofactor balancing, as predicted by an in-silico analysis using elementary flux mode (EFM). When the GPD1 gene, the first step of the glycerol cycle, was overexpressed in the XR/XDH-expressing S. cerevisiae, the glycerol production significantly increased, while the xylitol and ethanol yields became negligible. The reduced xylitol yield suggests that enough $NAD^+$ was supplied for XDH by the glycerol cycle. However, the GPD1 overexpression completely shifted the carbon flux from ethanol to glycerol. Thus, moderate expression of GPD1 may be necessary to achieve improved ethanol production through the cofactor balancing.

High Efficiency Voltage Balancing Dual Active Bridge Converter for the Bipolar DC Distribution System (양극성 DC 배전 시스템을 위한 고효율 전압 밸런싱 듀얼 액티브 브리지 컨버터)

  • Lee, Minsu;Cheon, Sungmoon;Choi, Dongmin;Moon, Gun-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.391-396
    • /
    • 2022
  • In this study, a new voltage-balancing dual-active bridge converter that integrates a DAB converter with a voltage balancer is proposed for a bipolar DC distribution system. The proposed converter is configured to connect two loads to the transformer secondary center tap of the DAB converter, and no additional components are added. The proposed converter has the same operation as the conventional DAB converter, and it makes both output voltages similar. Moreover, the imbalanced current offset between the two loads is bypassed only on the secondary side of the transformer. Consequently, the proposed converter integrates a voltage balancer without any additional components, and no additional loss occurs in the corresponding components. Thus, high efficiency and high power density can be achieved. The feasibility of the proposed converter is verified using 3 kW prototypes under 380 V input and 190/190 V output conditions.

High Step-Down Multiple-Output LED Driver with the Current Auto-Balance Characteristic

  • Luo, Quanming;Zhu, Binxin;Lu, Weiguo;Zhou, Luowei
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.519-527
    • /
    • 2012
  • A high step-down multiple-output LED driver is proposed in this paper. Firstly, the derivation of the driver with dual-output is presented and its operation principle and steady state performance are analyzed in detail. Secondly, a high step-down N-channel LED driver is proposed and its current auto-balance characteristic and step-down ratio are analyzed. Finally, an experimental prototype is built and the experimental results are given. The theoretical analysis and experimental results show that the proposed driver has the following virtues: First, if load balancing is achieved, the voltage gain is 1/N that of a Buck driver, where N is the number of channels. Second, each output automatically has an equal output current, without requiring more current close-loop control circuits than a Buck driver. Last, the voltage stresses of the switches and diodes are lower than those of a Buck driver, meaning that lower voltage switches and diodes can be used, and a higher efficiency can be expected.

Finite State Model-based Predictive Current Control with Two-step Horizon for Four-leg NPC Converters

  • Yaramasu, Venkata;Rivera, Marco;Narimani, Mehdi;Wu, Bin;Rodriguez, Jose
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1178-1188
    • /
    • 2014
  • This study proposes a finite-state model predictive controller to regulate the load current and balance the DC-link capacitor voltages of a four-leg neutral-point-clamped converter. The discrete-time model of the converter, DC-link, inductive filter, and load is used to predict the future behavior of the load currents and the DC-link capacitor voltages for all possible switching states. The switching state that minimizes the cost function is selected and directly applied to the converter. The cost function is defined to minimize the error between the predicted load currents and their references, as well as to balance the DC-link capacitor voltages. Moreover, the current regulation performance is improved by using a two-step prediction horizon. The feasibility of the proposed predictive control scheme for different references and loads is verified through real-time implementation on the basis of dSPACEDS1103.

A Dual Buck Three-Level PV Grid-Connected Inverter

  • Ji, Baojian;Hong, Feng;Wang, Jianhua;Huang, Shengming
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.910-919
    • /
    • 2015
  • The use of a PV grid-connected inverter with non-isolated topology and without a transformer is good for improving conversion efficiency; however, this inverter has become increasingly complicated for eliminating leakage current. To simplify the complicated architecture of traditional three-level dual buck inverters, a new dual Buck three-level PV grid-connected inverter topology is proposed. In the proposed topology, the voltage on the grounding stray capacitor is clamped by large input capacitors and is equal to half of the bus voltage; thus, leakage current can be eliminated. Unlike in the traditional topology, the current in the proposed topology passes through few elements and does not flow through the body diodes of MOSFET switches, resulting in increased efficiency. Additionally, a multi-loop control method that includes voltage-balancing control is proposed and analyzed. Both simulation and experimental results are demonstrated to verify the proposed structure and control method.