• 제목/요약/키워드: Current-Voltage

검색결과 11,646건 처리시간 0.039초

새로운 CMOS 전압-전류 안정화 회로 설계 (The New Design of CMOS Voltage-Current Reference Circuit for Stable Voltage-Current Applications)

  • 김영민;황종선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1239-1243
    • /
    • 2004
  • A novel voltage-current reference circuit for stable voltage-current applications is Proposed. Circuits for a positive and for a negative voltage-current reference are presented and are designed with commercial CMOS technology. The voltage-current reference that is stable over ambient temperature variations is an important component of most data acquisition systems. These results are verified by the HSPICE simulation $0.8{\mu}m$ parameter. As the result, the temperature dependency of output voltage and output current each is $0.57mV/^{\circ}C$, $0.11{\mu}A/^{\circ}C$ and the power dissipation is 1.8 mV on 5V supply voltage.

  • PDF

Common-Mode Voltage and Current Harmonic Reduction for Five-Phase VSIs with Model Predictive Current Control

  • Vu, Huu-Cong;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1477-1485
    • /
    • 2019
  • This paper proposes an effective model predictive current control (MPCC) that involves using 10 virtual voltage vectors to reduce the current harmonics and common-mode voltage (CMV) for a two-level five-phase voltage source inverter (VSI). In the proposed scheme, 10 virtual voltage vectors are included to reduce the CMV and low-order current harmonics. These virtual voltage vectors are employed as the input control set for the MPCC. Among the 10 virtual voltage vectors, two are applied throughout the whole sampling period to reduce current ripples. The two selected virtual voltage vectors are based on location information of the reference voltage vector, and their duration times are calculated using a simple algorithm. This significantly reduces the computational burden. Simulation and experimental results are provided to verify the effectiveness of the proposed scheme.

Current-Voltage-Luminance Characteristics Depending on a Direction of Applied Voltage in Organic Light-Emitting Diodes

  • Kim, Sang-Keol;Hong, Jin-Woong;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제3권1호
    • /
    • pp.38-41
    • /
    • 2002
  • We have investigated current-voltage-luminance characteristics of organic light-emitting diodes based on TPD/Alq$_3$organics depending on the application of forward-backward bias voltage. Luminance-voltage characteristics and luminous efficiency were measured at the same time when the current-voltage characteristics were measured. We have observed that the current-voltage characteristics shows a reversible current maxima at low voltage, which is possibly not related to the emission from Alq$_3$. Current-voltage-luminance characteristics imply that the conduction luminance mechanism at low voltage is different from that of high voltage one.

Variable-magnitude Voltage Signal Injection for Current Reconstruction in an IPMSM Sensorless Drive with a Single Sensor

  • Im, Jun-Hyuk;Kim, Sang-Il;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1558-1565
    • /
    • 2018
  • Three-phase current is reconstructed from the dc-link current in an AC machine drive with a single current sensor. Switching pattern modification methods, in which the magnitude of the effective voltage vector is secured over its minimum, are investigated to accurately reconstruct the three-phase current. However, the existing methods that modify the switching pattern cause voltage and current distortions that degrade sensorless performance. This paper proposes a variable-magnitude voltage signal injection method based on a high frequency voltage signal injection. The proposed method generates a voltage reference vector that ensures the minimum magnitude of the effective voltage vector by varying the magnitude of the injection signal. This method can realize high quality current reconstruction without switching pattern modification. The proposed method is verified by experiments in a 600W Interior permanent magnet synchronous machine (IPMSM) drive system.

교류측 전압 및 전류 센서가 없는 3상 Z-소스 PWM 정류기의 퍼지-PI 제어 (A Fuzzy-PI Control Scheme of the Three-Phase Z-Source PWM Rectifier without AC-Side Voltage and Current Sensors)

  • 한근우;정영국;임영철
    • 전기학회논문지
    • /
    • 제62권6호
    • /
    • pp.767-781
    • /
    • 2013
  • In this paper, we proposes the AC input voltage and current sensorless control scheme to control the input power factor and DC output voltage of the three-phase Z-source PWM rectifier. For DC-link voltage control which is sensitive to the system parameters of the PWM rectifier, fuzzy-PI controller is used. Because the AC input voltage and current are estimated using only the DC-link voltage and current, AC input voltage and current sensors are not required. In addition, the unity input power factor and DC output voltage can be controlled. The phase-angle of the detected AC input voltage and estimated voltage, the response characteristics of the DC output voltage according to the DC voltage references, the FFT results of the estimated voltage and current, efficiency, and the response characteristics of the conventional PI controller and fuzzy-PI controller are verified by PSIM simulation.

Current Limit Strategy of Voltage Controller of Delta-Connected H-Bridge STATCOM under Unbalanced Voltage Drop

  • Son, Gum Tae;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.550-558
    • /
    • 2018
  • This paper presents the current limit strategy of voltage controller of delta-connected H-bridge static synchronous compensator (STATCOM) under an unbalanced voltage fault event. When phase to ground fault happens, the feasibility to heighten the magnitude of sagging phase voltage is considered by using symmetric transformation method in delta-structure STATCOM. And the efficiency to cover the maximum physical current limit of switching device is considered by using vector analysis method that calculate the zero sequence current for balancing the cluster energy in delta connected H-bridge STATCOM. The result is simple and obvious. Only positive sequence current has to be used to support the unbalanced voltage sag. Although the relationship between combination of the negative sequence voltage with current and zero sequence current is nonlinear, the more negative sequence current is supplying, the larger zero sequence current is required. From the full-model STATCOM system simulation, zero sequence current demand is identified according to a ratio of positive and negative sequence compensating current. When only positive sequence current support voltage sag, the least zero sequence current is needed.

New Zero-Current-Transition (ZCT) Circuit Cell Without Additional Current Stress

  • Kim Chong-Eun;Choi Eun-Suk;Youn Myung-Joong;Moon Gun-Woo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.294-298
    • /
    • 2003
  • In this paper, the new zero-current-transition (ZCT) circuit cell is proposed. The main switch is turned-off under the zero current and zero voltage condition, and there is no additional current stress and voltage stress in, the main switch and the main diode. The Auxiliary switch is turned-off under the zero voltage condition, and the main diode is turned-on under the zero voltage condition, The resonant current required to obtain the ZCT is small and regenerated to the input voltage source. The operational principles of the boost converter integrated with the proposed ZCT circuit cell is analyzed theoretically and verified by the simulation and experimental result. Index terms - zero-current-transition (ZCT), zero-current- switching (ZCS), zero-voltage-switching (ZVS)

  • PDF

광전류/광전압 센서의 일체화 설계에 관한 연구 (A study on single body design of optical current sensor and optical voltage sensor)

  • 김영수;김요희
    • 한국통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.1596-1603
    • /
    • 1996
  • A single body type of fiber-optic current and voltae sensor using a rare earth doped YIG and a bismuth silicon oxide single crystsl is proposed, which is used for simultaneous measurement of the AC electric current and AC electric voltage over the trasmission lines. Experimental results showed that the fiber-optic current sensor has the maximum 7.5% error within the current range of 0A to 400A, and the fiber-optic voltage sensor has the maximum 0.87% error within the current range of 0V to 400V. The output waveforms of proposed fiber-optic sensor system has a good agreement with output waveforms of conductor current and voltage. Experimental results proved that the output of fiber-optic current sensor is not affected by the electric voltage applied to the fiber-optic voltage sensor, and also, that the output of fiber-optic voltage sensor is not affected by the electric current applied to the fiber-optic current sensor.

  • PDF

A study on a modeling method about current-voltage characteristic of HTS tape considering resistance of stabilizer

  • Lee, W.S.;Lee, J.;Nam, S.;Ko, T.K.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권3호
    • /
    • pp.9-12
    • /
    • 2013
  • Current-voltage characteristic models of superconducting material are suggested by many researchers. These current-voltage characteristic models are important because they can be used for design or simulation of superconductor devices. But widely used current-voltage models of superconductor wire still have some limitations. For example, a standard E-J power model has no parameters related with stabilizer's resistance in superconductor wire. In this paper, a current-voltage characteristic modeling method for high temperature superconductor (HTS) tape with considering the effect of stabilizer is introduced. And a current-voltage characteristic of a HTS tape is measured under different stabilizer conditions. Those measured current-voltage characteristics of the HTS tape modeled with proposed modeling method and the modeling results are compared.

넓은 범위의 전류 출력을 갖는 고선형 전압-제어 전류원 회로 (High-linearity voltage-controlled current source circuits with wide range current output)

  • 차형우
    • 대한전자공학회논문지SD
    • /
    • 제41권7호
    • /
    • pp.89-96
    • /
    • 2004
  • 넓은 범위의 전압-제어 발진기 및 자동 이득 조절기의 실현을 위한 고선형 전압-제어 전류원(VCCS) 회로를 제안하였다. 제안한 VCCS는 전압 입력을 위해 이미터 폴로워, 전류 출력을 위해 이미터가 결합된 두 개의 공통-베이스 증폭기, 그리고 넓은 범위의 전류 출력과 높은 선형성을 얻기 위해 두 증폭기를 결합한 전류 미러로 구성된다. VCCS의 회로는 별도의 바이어스회로가 없이 단지 5개의 트랜지스터와 1개의 저항기만 사용하였다. 시뮬레이션 결과 제안한 VCCS는 5V의 공급전압에서 1V에서 4.8V까지의 제어-전압에 대하여 최대 0A에서 300㎃까지의 전류를 출력할 수 있다. 0㎃에서 300㎃의 출력 전류의 최대 선형 오차는 1.4 %이였다.