• Title/Summary/Keyword: Current-Source PWM inverter

Search Result 189, Processing Time 0.035 seconds

On Study for Improvement of The Inverter Welder (인버터 용접기의 전압손실 개선에 관한 연구)

  • Bae, Jong-Il;Lee, Dong-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2063-2064
    • /
    • 2006
  • The power source of inverter welder stable power of low voltage and high current. Because if shouldn't be, it is caused to spark between the parent metal and the peak. So that, we designed to be base on high frequency transformer and reactor of DC part. Then, we optimized control of PWM, current rising slant, voltage, current, pulse current and inverter out-put voltage. Also we designed PCB for EMI and noises.

  • PDF

The Improvement of Current Waveforms for a PWM Variable Speed $3{\Phi}$ Induction Motor with the Low Pass LC Filter (저역통과 LC 필터를 이용한 PWM 가변속 3상 유도전동기의 전류파형 개선)

  • Nam, Taek-Kun;Park, Jin-Kil;Kim, Pil-Jae
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.588-590
    • /
    • 1996
  • An AC induction motor or constant speed characteristics has been widely used as power source because of simple structure and low maintenance cost in industrial field. The variable frequency AC source with a conventional inverter which is composed or power semi-conductors and drive systems contains much noises in sine wave current due to high speed switching or direct current. In this paper, the low pass LC filter for a variable speed induction motor driven by a full bridge inverter is introduced to solve EMI problem originated by much noise current. The modified LC filter based on the 3rd order Butterworth LC filter is used for the computer simulations and real experiments. The characteristics or proposed LC filter are investigated through FET analysis.

  • PDF

Current-source PWM inverter for photovoltaic system (태양광 발전 시스템용 전류원형 PWM 인버터)

  • Hong, Jeng-Pyo;Part, Sung-Jun;Kwon, Soon-Jae;Kim, Jong-Dal;Sohn, Mu-Heon;Kim, Gyu-Seob
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.154-157
    • /
    • 2003
  • This paper presents a current-source-inverter based on a buck-boost configuration and its application for residential photovoltaic system. The proposed circuit has five switches. Among them, only one switch acts as chopping, and the other determine the polarity of output; therefore, it can reduce the switching loss. Because the input inductor current is operated on the discontinuous conduction mode, high power factor can be achieved without additional input current controller, So the overall system shows a simple structure. The operational modes are analysed in depth, and then it was verified through the experimental results using a 150 [W] prototype equipped with digital signal processor TMS320F241.

  • PDF

Interface between Photovoltaic System and Utility Line using Current-Source PWM Inverter (전류원형 PWM 인버터를 이용한 태양광 시스템과 계통 연계를 위한 연구)

  • Kang, Feel-Soon;Park, Sung-Jun;Park, Han-Woong;Kim, Cheul-U
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.57-61
    • /
    • 2002
  • This paper presents a current-source-inverter based on a buck-boost configuration and its application for residential photovoltaic system. The proposed circuit has five switches. Among them, only one switch acts as chopping, and the other determine the polarity of output; therefore, it can reduce the switching loss. Because the input inductor current is operated on the discontinuous conduction mode, high power factor can be achieved without additional input current controller. So the overall system shows a simple structure. The operational modes are analysed in depth, and then it was verified through the experimental results using a 150 W prototype.

  • PDF

MM PWM Scheme for High Performance and Harmonic Effects Minimization of VSI-IM Drive System (VSI-IM 구동시스템의 고동작 및 고주파영향 최소화를 위한 MM PWM 방식)

  • Min Soo Kim
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.1
    • /
    • pp.42-48
    • /
    • 1988
  • MM(multimode) PWM(pulse width modulation) Suitable for high performance and harmonic effects minimization of VSI (voltabge source invertetr)-IM (induction motor)drive system is proposed. The approximated optimal, suboptimal and optimal PWM are implemented in the low frequency range, while square wave operation is realized in the hibh frequency range. The pulse width Modulator is capable of generating control signals to a transistorized inverter operating at about 1KHz. All functions except digital comparison have been implemented in softyware making the scheme economical, flexible and reliable. Pulse width modulator is built and tested experimentally. In order to confirm the effectiveness and the reliability of the theoretical proposition, this scheme is applied to 1Hp, Three phase IM. As results, it is concluded that the scheme of MM PWM is superior to other conventional switching scheme through the discussions or analysis carried out on the items such as line-to-line voltage, current and spectrum of current harmonic components observed at the output terminal of inverter, noise level of motor.

  • PDF

Power Module Bridge Type Auxiliary Resonant AC Link Snubber-Assisted Three-Phase Soft Switching Inverter

  • Hisashi Iyomori;Nagai, Shin-ichiro;Masanobu Yoshida;Eiji Hiraki;Mutsuo Nakaoka
    • Journal of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.77-86
    • /
    • 2004
  • This paper presents a novel three-phase power module bridge type auxiliary resonant AC link snubber for the three-phase voltage-fed sinwave soft switching PWM inverter operating under specific instantaneous space voltage vector modulation. The operating principle of this resonant snubber is described for current source load model during one switching period, along with its design approach based on the simulation data. The performance evaluations of space vector modulation three-phase sinewave soft switching inverter with a new three-phase active auxiliary resonant AC link snubber are discussed as compared with those of three-phase voltage source-fed sinewave hard switching PWM inverter with a standard space voltage vector modulation strategy. The power loss analysis and conventional efficiency estimation of three-phase soft switching PWM inverter using ICBT modules are carried out including all the conduction power losses based upon the measured v-i characteristics of IGBT and its antiparallel diode as well as their switching losses.

A Study on The Three-Phase Active Power Filter Using Voltage-Source PWM Converter (전압형 PWM 컴버터를 이용한 3상 능동 전력 필터에 관한 연구)

  • 박민호;김한성;최규하;이제필
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.5
    • /
    • pp.370-379
    • /
    • 1989
  • This paper describes a three-phase active power filter using voltage-source PWM converter, which can eliminate the harmonics and compensate the reactive power in the ac sides of 6-pulse rectifier. The active filter consists of three-phase PWM inverter and a capacitor, and the hysteresis control technique is used to make the compensating current close to the existing harmonic current and also to improve the response of the filter with simple control circuit. As a result the compensated ac line current becomes sinusoidal and the input power factor is improved roughly to unity.

Four Novel PWM Shoot-Through Control Methods for Impedance Source DC-DC Converters

  • Vinnikov, Dmitri;Roasto, Indrek;Liivik, Liisa;Blinov, Andrei
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.299-308
    • /
    • 2015
  • This study proposes four novel pulse width modulation (PWM) shoot-through control methods for impedance source (IS) galvanically isolated DC-DC converters. These methods are derived from a PWM control method with shifted shoot-through introduced by the authors in 2012. In contrast to the baseline solution, where the shoot-through states are generated by the simultaneous conduction of all transistors in the inverter bridge, our new approach is based on the shoot-through generation by one inverter leg. The idea is to increase the number of soft-switched transients and, therefore, decrease the dynamic losses of the front-end inverter. All the proposed approaches are experimentally verified through an insulated-gate bipolar transistor-based IS DC-DC converter. Conclusions are drawn in accordance with the results of the switching loss analysis.

New Soft-Switching Current Source Inverter for a Photovoltaic Power System

  • Han, Byung-Moon;Kim, Hee-Jung;Baek, Seung-Taek
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.37-43
    • /
    • 2003
  • This paper proposes a soft-switching current source inverter for a photovoltaic power system. The proposed inverter has an H-type switched-capacitor module composed of two semiconductor switches, two diodes, and an LC resonant circuit. The operation of the proposed system was analyzed by a theoretical approach with equivalent circuits and was verified by computer simulations with SPICE and experimental implementation with a hardware prototype. The proposed system could be effectively applied for the power converter of photovoltaic power system interconnected with the AC power system.

A Study on the Utility Interactive Photovoltaic System using a Chopper and a PWM Inverter (쵸퍼와 PWM 전압형 인버터를 이용한 계통연계형 태양광발전시스템에 관한 연구)

  • 유택빈;성낙규;이승환;김성남;이훈구;한경희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.131-137
    • /
    • 1998
  • The solar cells should be operated at the maximum power point because its output characteristics are greatly fluctuated on the variation of insolation, temperature and load. Photovoltaic system needs an inverter which can interface the dc output power of solar cell with the residential ac load. The inverter has to supply a sinusoidal current and voltage to the load and the utility line with a high power factor. This paper proposes an utility interactive photovoltaic system designed with a step-up chopper and a PWM voltage source inverter. The step-up chopper operates in continuous mode by adjusting the duty ratio so that the photovoltaic system tracks the maximum power points of solar cell without any influence on the variation of insolation and temperature. The voltage source inverter operates in a manner that its output voltage is in phase with the utility voltage. The inverter supplies an ac power with high factor and low level of harmonics to the load and the utility power system.