• Title/Summary/Keyword: Current transient

Search Result 1,272, Processing Time 0.023 seconds

Experimental and Analytical Study on the Bus Duct System for the Prediction of Temperature Variations Due To the Fluctuation of Load

  • Thirumurugaveerakumar, S.;Sakthivel, M.;Valarmathi, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2036-2041
    • /
    • 2014
  • In this paper, a thermal model is developed for the bus bar system to predict the temperature variation during the transient time period and to calculate both the steady-state and transient electrical current carrying capacity (ampacity) of bus bar. The bus bar system installed in the power house of Kumaraguru College of Technology, Coimbatore has been considered. Temperature variation predicted in the modelling is validated by observing the current and steady state temperatures in different feeders of the bus bar. Magnetic field of the extreme phases R and B induces more current in the middle phase Y. Hence, the steady state temperature in the phase Y is greater than other two phases. The transient capabilities of the bus bar are illustrated by calculating the variations in the bus bar temperature when it is subjected to a step change in current during the peak hours due to increase in hostel utilities and facilities (5.30 pm to 10.30 pm). The physical and geometrical properties of the bus bar and temperature variation in the bus bar are used to estimate the thermal time constants for common bus bar cross-sections. An analytical expression for the time constant of the bus bar is derived.

A Single-Input Single-Output Approach by using Minor-Loop Voltage Feedback Compensation with Modified SPWM Technique for Three-Phase AC-DC Buck Converter

  • Alias, Azrita;Rahim, Nasrudin Abd.;Hussain, Mohamed Azlan
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.829-840
    • /
    • 2013
  • The modified sinusoidal pulse-width modulation (SPWM) is one of the PWM techniques used in three-phase AC-DC buck converters. The modified SPWM works without the current sensor (the converter is current sensorless), improves production of sinusoidal AC current, enables obtainment of near-unity power factor, and controls output voltage through modulation gain (ranging from 0 to 1). The main problem of the modified SPWM is the huge starting current and voltage (during transient) that results from a large step change from the reference voltage. When the load changes, the output voltage significantly drops (through switching losses and non-ideal converter elements). The single-input single-output (SISO) approach with minor-loop voltage feedback controller presented here overcomes this problem. This approach is created on a theoretical linear model and verified by discrete-model simulation on MATLAB/Simulink. The capability and effectiveness of the SISO approach in compensating start-up current/voltage and in achieving zero steady-state error were tested for transient cases with step-changed load and step-changed reference voltage for linear and non-linear loads. Tests were done to analyze the transient performance against various controller gains. An experiment prototype was also developed for verification.

Measurement of Transient Current by using the Rogowski Coil (로고우스키코일을 이용한 과도전류의 측정)

  • 이복희;길경석;정승수;정상진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1206-1213
    • /
    • 1994
  • This paper presents the operation principle and design rule of the Rogowski coil which can measure the transient current and describes the calibration and application experimental results for performance evaluation. It is obtained that the response curves of the Robowski coil with the turns of 300 and the passive integrator to sinusoidal input give a good linearity up to the frequency of 500 [kHz] and the current measurement system gaving the Rogowski coil is the frequency bandwidth of 40 [Hz]~700 [kHz]. As an application experiment for the fabricated modeling power transmission line, the impulse current, which limitates the direct lightning return stroke to overhead ground wire, is measured by the Rogowski coil and its fast Fourier transformation is carried out. The equivalent circuit of the Rogowski coil considering the stray capacitances is proposed, and the theoretical analysis is in good agreement with the measurement results. Also, it is found that for high frequency domain the stray capacitance such as a distributed capacitance to the shield and the capacitance between windings of coil should be considered in designing the Rogowski coils since the resonance originates from the stray capacitance and the self-inductance of the Rogowski coil.

  • PDF

A Study of Current Transformer for High Power Testing Facility (대전력 시험설비용 변류기 특성에 관한 연구)

  • Jung, Heung-Soo;La, Dae-Ryeol;Kim, Sun-Koo;Roh, Chang-Il;Kim, Won-Man;Lee, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.735-737
    • /
    • 2002
  • A current transformer for measuring current in high power testing laboratory is exactly proportional to the current including D.C component due to electrical transient. But, current transformer isn't designed to consider D.C component, therefore when data acquisition system measure that current. the error is increased because of saturation of core. This paper describe the concept of transient factor and how to design the current transformer.

  • PDF

Transient Phenomena in the Temperature rise of p-n Junctions (p-n Junction에서의 온도상승의 과도현상)

  • Lee, U-Il;Son, Byeong-Gi;Lee, Geon-Il
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.7 no.4
    • /
    • pp.14-19
    • /
    • 1970
  • Transient phenomena in the p-n junction due to the selfheating effect of microplasma current have been investigated for the cases of small current and of large current. For the small current case, the temperature rise of the microplasma site is proportional to the current decrease and a unique time constant could be defined. However, the situation was complicated for the case of large current, and the time constant was not uniquely defined.

  • PDF

Analysis of Transient Scattering from Conducting Objects using Weighted Laguerre Polynomials and Electric Field Integral Equation (가중 라게르 다항식과 전장적분식을 이용한 도체의 과도 산란 해석)

  • 정백호;정용식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.937-946
    • /
    • 2002
  • In this paper, we present a stable solution of the transient electromagnetic scattering from the conducting objects. This method does not utilize the conventional marching-on in time (MOT) solution. Instead we solve the time domain integral equation by expressing the transient behavior of the induced current in terms of weighted Laguerre polynomials. By using this basis functions for the temporal variation, the time derivative in the integral equation can be handled analytically. Since these temporal basis functions converge to zero as time progresses, the transient response of the induced current does not have a late time oscillation. To show the validity of the proposed method, we solve a time domain electric feld integral equation and compare the results of MOT, Mie solution, and the inverse discrete Fourier transform (IDFT) of the solution obtained in the frequency domain.

Performance evaluation of the Floating Absorber for Safety at Transient (FAST) in the innovative Sodium-cooled Fast Reactor (iSFR) under a single control rod withdrawal accident

  • Lee, Seongmin;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1110-1119
    • /
    • 2020
  • The Floating Absorber for Safety at Transient (FAST) is a safety device used in the innovative Sodium-cooled Fast Reactor (iSFR). The FAST insert negative reactivity under transient or accident conditions. However, behavior of the FAST is still unclear under transient conditions. Therefore, the existing Floating Absorber for Safety at Transient Analysis Code (FASTAC) is improved to analyze the FAST movement by considering the reactivity and temperature distribution within the reactor core. The current FAST system is simulated under a single control rod withdrawal accident condition. In this investigation, the reactor thermal power does not return to its initial thermal power even if the FAST inserts negative reactivity. Only a 9 K of coolant temperature margin, in the hottest fuel assembly at EOL, can lead to unnecessary insertion of the negative reactivity. On the other hand, the FASTs cannot contribute to controlling the reactivity when normalized radial power is less than 0.889 at BOL and 0.972 at EOL. These simulation results suggest that the current FAST design needs to be optimized depending on its installed location. Meanwhile, the FAST system keeps the fuel, cladding and coolant temperatures below their limit temperatures with given conditions.

Ionization Behaviors in Various Soils Subjected to Impulse Currents (임펄스전류에 의한 토양의 종류별 이온화 특성)

  • Lee, Bok-Hee;Kim, Hoe-Gu;Park, Geon-Hun;Baek, Young-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.87-94
    • /
    • 2008
  • This parer presents the soil ionization phenomena and parameters associated to characterize the transient performances of grounding system under lightning impulse Currents. Ionization properties in occurring some soil media were experimentally investigated. The cylindrical test cell was employed in order to facilitate the analysis of soil breakdown field intensity and ionized radius. The soil breakdown field intensity, dependence of impedance on the amplitude of impulse current, V-I curves and transient impedances were discussed based on the voltage and current oscillograms. It was found that the ionization process and dynamic behaviors were strongly dependent on the types of soil and two current peaks were not observed in highly water-saturated soils. The results presented in this paper will provide useful information on the improvement of transient performance of a grounding system subjected to lightning impulse Current considering the soil ionization.

Improved FOC of IPMSM using Finite-state Model Predictive Current Control for EV

  • Won, Il-Kuen;Hwang, Jun-Ha;Kim, Do-Yun;Choo, Kyoung-Min;Lee, Soon-Ryung;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1851-1863
    • /
    • 2017
  • Interior permanent magnet synchronous motor (IPMSM) is most commonly used in the automotive industry as a traction motor for electric vehicle (EV). In electric vehicle, the torque output rapidly changes according to the operation of the accelerator and the braking of the driver. The transient torques are thus generated very frequently in accordance with the variable speed control of the driver. Therefore, in this paper, a method for improving the torque response in the transient states of IPMSM is proposed. In order to complement the disadvantages of the conventional PI current controller in the field oriented control (FOC), the finite-state model predictive current control and 2D-LUT is applied to improve the torque response at the torque transient period. Simulation and experiment results are given to verify the reliability of the proposed method.

Design and Fabrication of a High Speed Blocking Device of Transient Overvoltages for info-communication Facilities (정보통신기기용 과도이상전압 고속도차단장치의 설계 및 제작)

  • Gil, Gyeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.1
    • /
    • pp.51-56
    • /
    • 1999
  • This paper presents a new transient overvoltage blocking device (TOBD) for info-communication facilities with low power and high frequency bandwidth. Conventional protection devices have some problems such as low frequency bandwidth, low energy capacity and high remnant voltage. In order to improve these limitations, thehybrid type TOBD, which consists of a gas tube, avalanche diodes and junction typefield effect transistors (JFETs), was designed and fabricated. The TOBD differs from the conventional protection devices in configuration, and JFETs were used as an active non-linear element and a high speed switching diode with low capacitance limits high current. Therefore the avalanche dilde with low energy capacity are protected fromthe high current, and the TOBD has a very small input capacitance. From the performance test using combination surge generator, which can produce $1.2/50\mus\;4.2kV_{max}\; 8/20\mus\; 2.1kA_{max}$, it is confirmed that proposed TOBD has an excellent protection performance in tight clamping voltage and limiting current characteristics.

  • PDF