• Title/Summary/Keyword: Current transformer

Search Result 1,370, Processing Time 0.031 seconds

A Study on the Leakage Inductance in Current Transformers by 3D Integral Methods (3차원 적분법을 이용한 변류기의 누설 인덕턴스에 대한 연구)

  • Lee, Hee-Kab;Park, Yong-Pil;Lee, Sung-Ill
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.116-118
    • /
    • 2002
  • This paper presents leakage magnetic field and leakage inductance calculations in current transformer by means of 3-D Integral methods. From the distribution diagram of leakage magnetic flux to be analyzed using program called TRACAL 3, it confirms a parallel to the winding axis direction of the leakage flux lines in the air gap between the windings. The leakage inductances $L_{r1}\;and\;L_{r2}$ of the primary and secondary windings were calculated, their values are 4.23 mH and 0.49 mH, respectively. They are also similar to the measured values of the leakage inductances for the experimental verification, 4.06 mH and 0.47 mH.

  • PDF

The study of isolation driver for Reversible Power Converter (가역전력변환기 구동의 절연에 관한 연구)

  • Chun, J.H.;Lee, H.W.;Taniguchi, Hatsunori
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1349-1351
    • /
    • 2005
  • In this paper discusses isolation driver of single phase AC-DC reversible power converter The reversible power converter driven by binary combination at different transformer winding ratio by BCD code level. It has a advantage that constructs a control system simply and obtain load current of good quality with out filter circuit and free from noise or isolation for lower switching frequency. In this research, study on current type converter and inverter circuit that consist for possibility of AC-DC/BC-AC multi-level reversible converter.

  • PDF

High-current Full-Bridge Zero-Voltage-Switched DC-DC Converter (대전류형 FB ZVS DC-DC 컨버터에 관한 연구)

  • Lee, Byung-Ha;Jin, Jung-Hwan;Kim, In-Soo;Sung, Se-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.365-367
    • /
    • 1995
  • This paper is concerned on developing low-voltage high-current DC-DC converter using FB-ZVS PWM Converter. The converter output is 28V, 100A and regulated by phase-shift control method. IGBT is used by the main switching device and high frequency transformer is made for operating at 30kHz switching frequency. When the load vary widely, converter's ZVS characteristic is expressed by experiment result.

  • PDF

Harmonics Analysis and Modelling for Distribution System (배전 시스템의 고조파 분석 및 모델링에 관한 연구)

  • Sung Byung H;Wang Yong P;Chung Hyuong H;Park Hea C;Park In P
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.267-269
    • /
    • 2004
  • Recently, due to increasing the application of power electronic equipment, harmonics generated from the non-liner load are fairy produced. Harmonics can cause a distribution problems such as the overheating of distribution transformer, the breakdown of device and communication interference. Interest about power quality decline of distribution system is very increased. In this paper, we are measured the harmonic voltage and current of distribution system to analyze harmonic characteristics, and it is analyzed Total Harmonic Distortion(HTD). Also, we are modeled distribution system using PSCAD/EMTDC. And it is analyzed harmonic voltage and current in steady-state. The study result have been indicated the utility about harmonics analysis and modeling for distribution system.

  • PDF

Fusing Time Characteristics Analysis of Cable according to Temperature and Insulator (온도 및 절연체에 따른 케이블의 단선시간 특성 해석)

  • Kim, Ju-Hee;Kang, Sin-Dong;Kim, Jae-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.15-20
    • /
    • 2018
  • This paper describes the fusing time characteristics of Light PVC Sheathed Circular Cord(VCTF) and Tray Frame Retardant(TFR) cables according to increased temperature under over current condition. The experimental equation will be used to determine the validity and reliability of the test results. The over current flowed 3, 5 and 10 times higher than the amount of allowable current using DC power supply with DAQ(Data Acquisition) measurement system. An infrared radiation heater, which was controlled by a variable AC auto transformer, was used to increase the temperature from room temperature to 50, 100 and 150 degrees Celsius. First, two type of cables were analyzed those with different cross-sectional areas with in the same structure and those with different structures with in the same cross-sectional areas. Then, it was determined how fusing time had been influenced according to the cross-sectional areas and different structures, respectively. The cable resistance was increased by joule heating according to increasing temperature. Therefore, the allowable current of cable is decreased. Finally, the fusing time of the cable was decreased due to increased temperatures at current flow, which were 3 times the amount of allowable current. The instantaneous breakdown was observed when current flow was 5 and 10 times over the amount of allowable current. The fusing time is directly affected by the structure of cable insulation.

A New Controller of Single Phase Active Power Filter Using Rotating Synchronous Frame d-q Transformation (회전하는 동기 좌표계 d-q 변환을 이용한 단상 능동 전력 필터의 새로운 제어기)

  • Kang, Min Gu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.271-275
    • /
    • 2014
  • A New Single Phase Active Power Filter Controller is proposed using Rotating Synchronous Frame d-q transformation. Instantaneous Active Power is calculated using d-q transformation. Average Value of Instantaneous Active Power is obtained using Low Pass Filter. Because power factor is corrected, source current is in phase with source voltage. Amplitude of source current is calculated using single phase power formula. Reference signal of compensated current of Active power filter is obtained from source current reference signal minus load current. Simulation is performed using hysteresis current controller in proposed new controller. Simulation result shows that because active power filter compensates load current, source current is in phase with source voltage and source current is sinusoidal. And Hilbert transformer is builded using all pass filter.

A Design Method of Iron-cored CTs To Prevent Satruation (포화를 방지하기 위한 보호용 철심 변류기 설계 방법)

  • Lee, Ju-Hun;Gang, Sang-Hui;Gang, Yong-Cheol;Lee, Seung-Jae;Bae, Ju-Cheon;An, Jun-Gi;Lee, Cheong-Hak;Lee, Jeong-Taek
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.119-126
    • /
    • 1999
  • Current transformer (CT) saturation may cause a variety of protective relays to malfunction. The conventional CT is designed that it can carry up to 20 times the rated current without exceeding 10% ratio error. However, the possibility of CT saturation still remains if the fault current contains substantial amounts of ac and/or dc components. This paper presents a design method of iron-cored CTs for use with protective relays to prevent CT saturation. The proposed design method determines the core cross section of the CT; it employs the transient dimensioning factor to consider relay's operating time (duty cycle) and dc component as well as ac components contained in the fault current, and symmetrical short-circuit current factor to consider as well as ac components contained in the fault current, and symmetrical short-circuit current factor to consider the biggest fault current. The method designs the cross section of CTs in cases of reclosure and no reclosure.

  • PDF

Domestic Efforts for SFCL Application and Hybrid SFCL (국내 초전도 한류기 요구와 하이브리드 초전도 한류기)

  • Hyun, O.B.;Kim, H.R.;Yim, Y.S.;Sim, J.;Park, K.B.;Oh, I.S.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.60-67
    • /
    • 2008
  • We present domestic efforts for superconducting fault current limiter (SFCL) application in the Korea Electric Power Corporation (KEPCO) grid and pending points at issue. KEPCO's decision to upgrade the 154 kV/22.9 kV main transformer from 60 MVA to 100 MVA cast a problem of high fault current in the 22.9 kV distribution lines. The grid planners supported adopting an SFCL to control the fault current. This environment friendly to SFCL application must be highly dependent upon the successful development of SFCL having specifications that domestic utility required. The required conditions are (1) small size of not greater than twice of 22.9 kV gas insulated switch-gear (GIS), (2) sustainability of current limitation without the line breaking by circuit breakers (CB) for maximum 1.5 seconds. Also, optionally, recommended is (3) the reclosing capability. Conventional resistive SFCLs do not meet (1) $\sim$ (3) all together. A hybrid SFCL is an excellent solution to meet the conditions. The hybrid SFCL consists of HTS SFCL components for fault detection and line commutation, a fast switch (FS) to break the primary path, and a limiter. This characteristic structure not only enables excellent current limiting performances and the reclosing capability, but also allows drastic reduction of HTS volume and small size of the cryostat, resulting in economic feasibility and compactness of the equipment. External current limiter also enables long term limitation since it is far less sensitive to heat generation than HTS. Semi-active operation is another advantage of the hybrid structure. We will discuss more pending points at issues such as maintenance-free long term operation, small size to accommodate the in-house substation, passive and active control, back-up plans, diagnosis, and so on.

  • PDF

A Study on Analysis of Arc Current Waveforms for Detection of Prognostics of Electrical Fires (전기화재 징후 감지를 위한 아크전류 파형분석에 관한 연구)

  • Hwang, Jin-Kwon
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.7-14
    • /
    • 2009
  • Several electrical loads such as inrush current, normal operation arcing and non-sinusoidal loads have normal current waveforms similar to arc waveforms. To detect arcs in such loads, therefore, it is necessary to analyze difference between current waveforms with or without arcs. In this paper, using apparatuses of arc generation in UL 1699, arcs are generated in these loads and, then, arc current waveforms are investigated in both the time and the frequency domains to find arc characteristics. This investigation shows that arc current signals have shoulders at some zero current points in the time domain and increment of spectrum magnitude in all over frequency domain. It also shows that the arc characteristics at normal operation arcing and non-sinusoidal loads are detected more easily in the frequency domain than in the time domain. This investigated arc characteristics are expected to be utilized as the basis of development of arc-fault circuit interrupters.

Design of a High Power Three-Phase ZVS Push-Pull Converter (대전력 3상 ZVS 푸쉬풀 컨버터 설계)

  • Park, Jun-Sung;Lee, Sang-Won;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.209-218
    • /
    • 2011
  • In low voltage high current applications such as fuel cells the current-fed DC-DC converter which has small ripple current and turn ratio is more efficient. In the applications larger than 5kW the conventional single-phase current-fed converter based on full-bridge, half-bridge or push-pull topologies has high current burden of devices such as switches, and the selection and optimized design of the devices are not easy. In this paper a three-phase active-clamped current-fed push-pull DC-DC converter suitable for high power high step-up applications is proposed. The proposed converter has reduced current burden and is suitable for wide input voltage applications due to the use of whole duty cycle range. Design methods of main components including three-phase high frequency transformers are provided, and the validity and performance of the proposed converter are proved from a 5kW prototype.