• Title/Summary/Keyword: Current tracking

Search Result 914, Processing Time 0.027 seconds

Robust Current Tracking Control of Switched Reluctance Motors (Switched Reluctance Motor의 견실한 전류추적 제어기 설계)

  • Kim, Chang-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.218-228
    • /
    • 2001
  • The switched reluctance motor(SRM) has been increasingly used in high-performance servo applications such as electric vehicles, aircraft, and direct-drive robots. The dynamic equations of SRMs are, however, highly nonlinear and this makes it difficult to control SRMs with high performance. In this paper, we propose a new robust current tracking controller for SAMs which can compensate the nonlinear characteristics of SRM(i.e., back-emf and inductance) completely and hence shows perfect tracking performance even with an arbitrary small current control loop gain. Furthermore, even in case that there exist some model uncertainties, our current controller guarantees that the stator currents can track the reference current commands with sufficiently small tracking errors. In order to justify our work, we present the tracking performance analysis and some simulation results.

  • PDF

Sinusoidal Current Tracking Inverter Control with Neural Networks (신경회로망에 의한 정현파 전류 추종 인버어터의 제어)

  • 배상준;이달해;김동희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.219-226
    • /
    • 1994
  • Sinusoidal current tracking inverters have substantial advantages in high performance acdrive systems and various control strategies for the inverter have been proposed by several researchers. This paper develops a sinusoidal current tracking inverter with neural networks. The neural network are trained to follow a set of reference current waveforms by erro back propagation algorithm and the trained neural networks are applied to the current control. We compare neural networks method with conventional current control methods (fixed band and sinusiidal band hystersis methods) and simulation results are presented.

  • PDF

Configuration of PV System for Improved Efficientcy Using PV Current Control of MPPT (PV 전류를 이용한 최대전력점 추적방식의 태양광 발전 시스템 개발)

  • Yoo, Yang-Woo;Seo, Deok-Hyun;Kim, Yoo-Ha
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.31-38
    • /
    • 2014
  • Maximum power point tracking method is very important to enhance efficiency of photovoltaic system. Meanwhile a lot of research about MPPT has been studied and developed new one better than a method of the past. This paper deals with Perturb and Observation that are most commonly used. Tracking parameter changed PV voltage for PV current and it was simulated with P-SIM program. The P&O tracking method to use current for parameter lows ripple rate of output and enhances response rate of tracking. Through this study, it has been demonstrated that method using current for tracking parameter is effective.

Analysis of Surface Tracking of Micro and Nano Size Alumina Filled Silicone Rubber for High Voltage AC Transmission

  • Loganathan, N.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.345-353
    • /
    • 2013
  • This paper discusses the experimental results in an effort to understand the tracking and erosion resistance of the micro and nano size $Al_2O_3$ filled silicone rubber (SIR) material which has been studied under the AC voltages, with ammonium chloride as a contaminant, as per IEC 60587 test procedures. The characteristic changes in the tracking resistance of the micro and nano size filled specimens were analyzed through leakage current measurement and the eroded masses were used to evaluate the relative erosion and tracking resistance of the composites. The fundamental, third and fifth harmonic of the leakage current during the tracking study were analyzed using moving average current technique. It was observed that the harmonic components of leakage current show good correlation with the tracking and erosion resistance of the material. The thermogravimetry-derivative thermo gravimetric (TG-DTG) studies were performed to understand the thermal degradation of the composites. The physical and chemical studies were carried out by using scanning electron microscope (SEM), Energy Dispersive X-ray analysis (EDAX) and Fourier Transform Infra-red (FTIR) Spectroscopy. The obtained result indicated that the performance of nano filled SIR was better than the micro filled SIR material when the % wt. of filler increased.

Nonlinear Controller for the Velocity Tracking and Rejection of Sinusoidal Disturbances in Permanent Magnet Stepper Motors (영구 자석 스테퍼 모터의 속도 추종과 외란 제거를 위한 비선형 제어기)

  • Kim, Won-Hee;Gang, Dong-Gyu;Han, Jonh-Pyo;Chung, Chung-Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.632-638
    • /
    • 2011
  • In this paper, a nonlinear controller is proposed to track the desired velocity and to cancel sinusoidal disturbances. The proposed method consists of a velocity tracking controller and internal model principles (IMPs). For the design of the velocity tracking controller, mechanical and electrical dynamic controllers are independently designed. For the mechanical dynamics, the velocity tracking controller generates the desired quadrature current to track the desired velocity. The current tracking controller is designed to guarantee the desired quadrature current and to regulate the direct current. Therefore, the proposed velocity tracking controller has a field-oriented control. Since the controllers of the mechanical and electrical dynamics are independently designed, the stability of the closed-loop system is demonstrated using passivity. Since both the cogging torque and DC current errors act as sinusoidal disturbances in PMSM, we use four add-on type IMPs that preserve the merits and performance of the pre-designed controller without sacrificing the closed-loop stability. The performance of the proposed method is validated via simulations.

Development of an Effective Arc Sensing Algorithm for Seam-Tracking in Flux-Cored Arc Welding Process for Horizontal Fillet Joints (FCAW 수평 필릿용접용 용접선추적을 위한 아크센싱 알고리즘 개발)

  • 권순창;최재성;장낙영
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.66-80
    • /
    • 1997
  • This paper describes a newly developed arc-sensing algorithm of seam-tracking for FCA W (flux-cored arc welding) horizontal fillet welding. In this algorithm, arc current and the Weighted-Are-Current (WAC) are used to adjust the position of a weld torch in directions of bead throat and weaving, respectively. The WAC, which is newly devised in this study, means that arc current in the vicinity of weaving end is more emphasized than that in the center of weaving. The reason of this is because there usually exists much noise in the center of weaving due to abrupt change of arc length in case some empty gaps exist in a fillet joint Variance analysis was performed in order to check the effect of weld parameters on arc current and the WAC. As a result, the relationships between tip-to-workpiece distance and arc current, and between weaving offset and the WAC were established.To check "the validity of the algorithm, seam-tracking experiments were performed ;mder various welding condition. The result of experiments showed a satisfactory tracking performance in the presence of empty gaps in a horizontal fillet joint.et joint.

  • PDF

Joint tracking system for butt joint welding process using eddy current sensors with the condition of no gap distance (자기장 센서를 이용한 갭간격이 없는 박판 맞대기 용접부의 용접선 추적 장치)

  • 김영선;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.836-839
    • /
    • 1997
  • In recent years, much progress has been made in the automation of welding coped with a variety of highly flexible sensors. Among these sensors, only the eddy current sensor can detect the center location of the butt joint whose gap distance is zero. Thus, in this study the eddy current sensor is used to develop a robust and useful joint tracking system. The developed system is tested to qualify the performance of the system and seam tracking algorithm is proposed and two simulation are executed to show the performance of the proposed tracking algorithm.

  • PDF

Classification and recognition of electrical tracking signal by means of LabVIEW (LabVIEW에 의한 Tracking 신호 분류 및 인식)

  • Kim, Dae-Bok;Kim, Jung-Tae;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.779-787
    • /
    • 2010
  • In this paper, We introduce electrical tracking generated from surface activity associated with flow of leakage current on insulator under wet and contaminated conditions and design electrical tracking pattern recognition system by using LabVIEW. We measure the leaking current of contaminated wire by using LabVIEW software and the NI-c-DAQ 9172 and NI-9239 hardware. As pattern recognition algorithm and optimization algorithm for electrical tracking system, neural networks, Radial Basis Function Neural Networks(RBFNNs) and particle swarm optimization are exploited. The designed electrical tracking recognition system consists of two parts such as the hardware part of electrical tracking generator, the NI-c-DAQ 9172 and NI-9239 hardware and the software part of LabVIEW block diagram, LabVIEW front panel and pattern recognition-related application software. The electrical tracking system decides whether electrical tracking generate or not on electrical wire.

Zero-Phase Angle Frequency Tracking Control of Wireless Power Transfer System for Electric Vehicles using Characteristics of LCCL-S Topology (LCCL-S 토폴로지 특성을 이용한 전기자동차용 무선충전시스템의 ZPA 주파수 추종 제어)

  • Byun, Jongeun;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.404-411
    • /
    • 2020
  • Inductive power transfer (IPT) systems for electric vehicles generally require zero phase angle (ZPA) frequency tracking control to achieve high efficiency. Current sensors are used for ZPA frequency tracking control. However, the use of current sensors causes several problems, such as switching noise, degrading control performance, and control complexity. To solve these problems, this study proposes ZPA frequency tracking control without current sensors. Such control enables ZPA frequency tracking without real-time control and achieves stable zero voltage switching operation closed to ZPA frequency within all coupling coefficient and load ranges. The validity of the proposed control algorithm is verified on LCCL-S topology with a 3.3 kW rating IPT experimental test bed. Simulation verification is also performed.

Sinusoidal Tracking Control of Voltage Source PWM Converter by Input Current Estimation (입력전류추정에 의한 전압형 PWM 컨버터의 정현추종제어)

  • 허태원;박지호;신동률;김춘삼;우정인
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.4
    • /
    • pp.39-47
    • /
    • 2000
  • This paper presents the sinusoidal tracking controller in error to eliminate the steady state control error and to improve the transient characteristics for input current in voltage source PWM converter with input current estimation. The estimation method of input current values and configuration of controller are described. DC output voltage is controlled by PI controller, and sinusoidal tracking current controller which tracks directly AC input current is used as input current controller. The sinusoidal tracking current controller can be used without any coordinate transformation algorithms.It is proved that the steady state deviation of input current reduces to zero and the proposed control system is not affected by input voltage from transfer functions of input current control system. The validity of proposed scheme is verified by simulations and experimental results for load resister and input voltage variation.

  • PDF