• Title/Summary/Keyword: Current source rectifier

Search Result 145, Processing Time 0.028 seconds

Three-Phase Current Source Type ZVS-PWM Controlled PFC Rectifier with Single Active Auxiliary Resonant Snubber and Its Feasible Evaluations

  • Masayoshi Yamamoto;Shinji Sato;Tarek Ahmed;Eiji Hiraki;Lee, Hyun-Woo;Mutsuo Nakaoka
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.3
    • /
    • pp.127-133
    • /
    • 2004
  • This paper presents a prototype of three-phase current source zero voltage soft-switching PWM controlled PFC rectifier with Single Active Auxiliary Resonant Commutated Snubber (ARCS) circuit topology. The proposed three-phase PFC rectifier with sinewave current shaping and unity power factor scheme can operate under a condition of Zero Voltage Soft Switching (ZVS) in the main three phase rectifier circuit and zero current soft switching (ZCS) in auxiliary snubber circuits. The operating principle and steady-state performances of the proposed three-phase current source soft-switching PWM controlled PFC rectifier controlled by the DSP control implementation are evaluated and discussed on the basis of the experimental results of this active rectifier setup.

Improved Control Strategy Based on Space Vectors for Suppressing Grid-Side Current Harmonics in Three-Phase Current Source Rectifiers with a Hybrid Switch

  • Xu, Yan;Lu, Guang-Xiang;Jiang, Li-Jie;Yi, Gui-Ping
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.497-503
    • /
    • 2015
  • This paper analyses the harmonic pollution to power grids caused by several high-power rectifiers, summarizes the requirements for rectifiers in suppressing grid-side current harmonics and optimizes a new-type of current source PWM rectifier with a hybrid switch. The rectifier with a hybrid switch boasts significant current characteristics and cost advantages in the high-power area. To further enhance the working frequency of the current source rectifier with a hybrid switch for suppressing grid-side harmonics and reducing the inductance size, this paper proposes an optimal control strategy based on space vector. It also verifies that the optimal control strategy based on space vector can reduce the total harmonic distortion of the grid-side current of the rectifier with a hybrid switch via circuit simulation and experimental results.

Design of High Capacity Rectifier by Parallel Driving of MOSFET (MOSFET 병렬 구동을 이용한 대용량 정류기 구현)

  • Sun, Duk-Han;Cho, Nae-Su;Kim, Woo-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.227-233
    • /
    • 2007
  • In case of design of a rectifier to supply high current, To select switching frequency of semiconductor switches affect absolutely the design of the LC filter value in an power conversion circuit. The conventional rectifier by using MOSFET is no use in high current equipments because of small drain-source current. To solve this problem, this paper proposes to design of high capacity rectifier by parallel driving of MOSFET in the single half bridge DC-DC converter. This method can be able to develop high current rectifier by distributed drain-source current. The proposed scheme is able to expect a decrease in size, weight and cost of production by decreasing the LC filter value and increasing maximumly the switching frequency. The validity of the proposed parallel driving strategy is verified through computer-aided simulations and experimental results.

  • PDF

Four switch three-phase Z-source rectifier with improved switching characteristics

  • ANVAR, IBADULLAEV;Yoo, Dae-Hyun;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.301-302
    • /
    • 2014
  • This paper describes four switch three-phase Z-source rectifier with improved switching characteristics. This configuration has some advantages switching loss and optimal drive circuit. The rectifier has buck-boost function by shoot-through state. Also, the rectifier has the advantage of decreasing inrush current in start-up and transient states. In order to reduce harmonics PWM modulation technique with a variable index has been suggested. Four switch three-phase Z-source rectifier with improved switching characteristics can output stable DC voltage at the same time decreasing the system's harmonic current. And also the paper presents an application of DCC method in Z-source rectifier. Principles and dynamics of the system are discussed in detail. After having viewed the results we can confirm that the proposed method is eligible and efficient.

  • PDF

Input AC Voltage Sensorless Control for a Three-Phase Z-Source PWM Rectifier (3상 Z-소스 PWM 정류기의 입력 AC 전압 센서리스 제어)

  • Han, Keun-Woo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.355-364
    • /
    • 2013
  • Respect to the input AC voltage and output DC voltage, conventional three-phase PWM rectifier is classified as the voltage type rectifier with boost capability and the current type rectifier voltage with buck capability. Conventional PWM rectifier can not at the same time the boost and buck capability and its bridge is weak in the shoot- through state. These problems can be solved by Z-source PWM rectifier which has all characteristic of voltage and current type PWM rectifier. By shoot-through duty ratio control, the Z-source PWM rectifier can buck and boost at the same time, also, there is no need to consider the dead time. This paper proposes the input AC voltage sensorless control method of a three-phase Z-source PWM rectifier in order to accomplish the unity input power factor and output DC voltage control. The proposed method is estimated the input AC voltage by using input AC current and output DC voltage, hence, the sensor for the input AC voltage detection is no needed. comparison of the estimated and detected input AC voltage, estimated phase angle of the input voltage, the output DC voltage response for reference value, unity power factor, FFT(Fast Fourier Transform) of the estimated voltage and efficiency are verified by PSIM simulation.

Analysis of Input Characteristic in the Rectifier for Output Filter with Unbalanced Supply Voltages (불평형 전원전압을 갖는 정류시스템에서 출력필터에 따른 입력 특성 분석)

  • Kang, Su-Heon;Kim, Sang-Hoon
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.195-202
    • /
    • 2005
  • The rectifier characteristics and the quality of the input current worsens with the increase of unbalances or harmonics of the supply voltages. Rectifier input current harmonics interfere with proper power system operation, reduce rectifier power factor, and limit the power available from a given source. It is of importance to select appropriately the rectifier's output filter inductance to determine the rectifier input current waveform, the input current harmonics, and the power factor. This paper presents a quantitative analysis of single and three phase rectifier input current harmonics, total harmonic distortion, and power factor as a function of the output filter inductance under balanced and unbalanced conditions. Also, its performance under the supply voltage including harmonics be investigated. These results provide a reference for selecting reasonable rectifier's output filter inductance for given harmonics or power factor criterion.

  • PDF

Three-Phase Three-Switch Buck-Type Rectifier Based on Current Source Converter for 5MW PMSG Wind Turbine Systems

  • Chae, Beomseok;Suh, Yongsug;Kang, Tahyun
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1501-1512
    • /
    • 2018
  • This paper proposes a three-phase three-switch buck-type converter as the MSC of a wind turbine system. Owing to a novel switching modulation scheme that can eliminate the unwanted diode rectifier mode switching state, the proposed system exhibits a satisfying ac voltage and current waveform quality and torque ripple up to the level of a typical current source rectifier even under a wide power factor operating range. The proposed system has been verified through simulations and HILS tests on a PMSG wind turbine model of 5MW/4160V. The proposed converter has been shown to provide a stator current THD of 3.9% and a torque ripple of 1% under the rated power condition. In addition to the inherent advantage of the reduced switch count of three-phase three-switch buck-type converters, the proposed switching modulation technique can make this converter a viable solution for the MSC placed inside of a nacelle, which is under severe volume, weight and mechanical vibration design limits.

Drawing Sinusoidal Input Currents of Series-Connected Diode Rectifiers by A Current Injection Technique (직렬접속형 다이오드 정류기 시스템의 전류주입에 의한 고조파 저감)

  • 최세완;오준용;원충연;김영석
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.346-349
    • /
    • 1999
  • This paper proposes a new series-connected diode rectifier which draws sinusoidal input currents. The proposed rectifier system is configured by adding an auxiliary circuit to the conventional 12-pulse series-connected diode rectifier and employing a current injection technique. A low kVA (0.02Po (PU) ) active current source injects a triangular current results in near sinusoidal input current from the utility with less than 1% THD. The resulting system is suitable for high voltage and high power applications. Experimental results is provided from a 220VA rectifier system.

  • PDF

A New 18-Pulse Voltage Source Rectifier (새로운 18-펄스 전압형 정류회로)

  • Choi, Se-Wan;Kim, Ki-Yong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.5
    • /
    • pp.245-250
    • /
    • 2001
  • A new capacitor-input type voltage source rectifier is proposed in this paper. The proposed rectifier is based upon 6-pulse diode rectifier with the addition of an auxiliary circuit. By proper operation of the switches of the auxiliary circuit, the input voltage waveform has 18-pulse characteristics and the input current becomes almost sinusoidal due to input ac reactors. The operating principle along with current analysis and input voltage waveform synthesis is described. The experimental results from a laboratory prototype verify the proposed concept.

  • PDF

Research on a Multi-Objective Control Strategy for Current-source PWM Rectifiers under Unbalanced and Harmonic Grid Voltage Conditions

  • Geng, Yi-Wen;Liu, Hai-Wei;Deng, Ren-Xiong;Tian, Fang-Fang;Bai, Hao-Feng;Wang, Kai
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.171-184
    • /
    • 2018
  • Unbalanced and distorted grid voltages cause the grid side current of a current source PWM rectifier to be heavily distorted. They can also cause the DC-link current to fluctuate with a huge amplitude. In order to enhance the performance of a current-source PWM rectifier under unbalanced and harmonic grid voltage conditions, a mathematical model of a current-source PWM rectifier is established and a flexible multi-objective control strategy is proposed to control the DC-link current and grid-current. The fundamental positive/negative sequence, $5^{th}$ and $7^{th}$ order harmonic components of the grid voltage are first separated with the proposed control strategy. The grid current reference are optimized based on three objectives: 1) sinusoidal and symmetrical grid current, 2) sinusoidal grid current and elimination of the DC-current $2^{nd}$ order fluctuations, and 3) elimination of the DC-current $2^{nd}$ and $6^{th}$ order fluctuations. To avoid separation of the grid current components, a multi-frequency proportional-resonant controller is applied to control the fundamental positive/negative sequence, $5^{th}$ and $7^{th}$ order harmonic current. Finally, experimental results verify the effectiveness of proposed control strategy.