• Title/Summary/Keyword: Current power generation

Search Result 1,270, Processing Time 0.242 seconds

The development of a high efficient transcranial magnetic stimulation adopted real time-charging-discharging circuit

  • Kim, Whi-Young;Park, Sung-Joon
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.9-15
    • /
    • 2010
  • In this study, we have been proposed the new type of a transcranial magnetic stimulation adopted a variable voltage capacitor with Cockcroft-Walton circuit and constant-frequency current resonant half-bridge inverter. This a transcranial magnetic stimulation has some merits compared with the conventional one. First, it doesn't require the high voltage transformer. And second, it has less switching losses, compact size and capability in adjusting the transcranial magnetic stimulation output energy precisely. In this paper, we have performed the output characteristics of a transcranial magnetic stimulation system which is well known as magnetic stimulation. The tested results are described as a function of pulse repetition rate and switching numbers of the half-bridge inverter.

PSCAD/EMTDC BASED MODELING AND ANALYSIS OF A GRID-CONNECTED VARIABLE SPEED WIND ENERGY CONVERSION SCHEME (계통연계형 가변속 풍력발전방식의 PSCAD/EMTDC 모의 및 해석)

  • 김슬기;김응상
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.8
    • /
    • pp.413-419
    • /
    • 2003
  • The paper presents a simulation model and analysis of a grid-connected variable speed wind energy conversion scheme (VSWECS) using the PSCAD/EMTDC software. The modeled system uses a variable speed drive, a fixed pitch angle, a synchronous generator as a wind generator and an AC-DC-AC conversion scheme, which facilitates the wind generation to efficiently operate under varying wind speed while connected to the distribution network. The power output of the WECS is controlled by the AC-DC-AC conversion scheme, the objective of which is to capture the maximum active power under varying wind conditions and to keep the voltage magnitude of the terminal bus at a specific level. Aerodynamic models are applied for a wind turbine model. An simulation analysis of the scheme in terms of its responding to wind variations is also presented.

Development of wind power generator system model using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 풍력발전 시스템 모델 개발)

  • Kim, Young-Ju;Park, Dae-Jin;Ali, Mohd Hasan;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.2000-2001
    • /
    • 2007
  • Wind power generation system based on the PSCAD/EMTD is proposed in this paper for the simulations under the real weather conditions. Real field data of weather condition is interfaced to PSCAD/EMTDC using Fortran program interfaced method. And a new turbine component is developed using characteristic equation of a wind turbine and pitch angle control algorism. The generator output and current supplied into utility can be obtained by the transient analysis using PSCAD/EMTDC.

  • PDF

A Novel Pulse Density Modulated High Frequency Inverter for Streamer Reactor (스트리머 발생을 위한 새로운 PDM 고주파 인버터)

  • Kim, J.Y.;Mun, S.P.;Suh, K.Y.;Lee, H.W.;Jung, J.G.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.223-225
    • /
    • 2005
  • This paper presents a novel prototype of a current source resonant inverter using insulated gate bipolar transistors for driving a streamer reactor, streamer generation technology has been recognized as one of the best methods for water treatment, disinfection, industrial wastes utilization, and so on. However, some technological difficulties related to efficient streamer production have been significant problems restricting streamer usage in the industrial plants. Introduced in this paper is a pulse density modulated high frequency inverter for a plasma generate, which is developed with the aim to improve power conversion and control characteristics of the streamer reactor by using advances in power electronic technology. The developed system implements the feedforward control-based pulse density modulation control scheme with pulse width modulation feedback control strategy to compensate temperature and other environmental influences on streamer discharge.

  • PDF

Digital Control of Three Phase Active Filter System (3상 전류형 능동필터의 디지탈 제어)

  • Hwang, Jong-Gyu;Song, Sung-Hak;Mok, Hyung-Soo;Choe, Gyu-Ha;Kim, Han-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.431-433
    • /
    • 1995
  • Active Power Filters(APF) have been developed for several years to solve the harmonics disturbance problems on power system networks. This paper studies observer based digital algorithm and PWM technique for three phase current source APF by simulation. Both switching or outside white noises affect seriously at control signal for APF control system. Hence observer algorithm to reduce noises is used. A technique of generation gating patterns for the CSI topologies based on carrier PWM techniques is applied. The requirements imposed on gating signals are satisified by the appropriate combination of single phase switching patterns and short pulse generator.

  • PDF

Implementation of a High Power Backward Wave Oscillator on Electron Beam Diode Structure Improvement (전자빔 다이오드 구조개선에 의한 대전력 후진파발진기의 구현)

  • Kim, Won-Sop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.897-903
    • /
    • 2009
  • We have designed the backward wave oscillator. A power-pulsed generator oscillated at 24 GHz has higher frequency than current one. It is very inportant to prevent microwave from going into the beam diode, since intence microwave will harmfully affect beam generation. Due to the axial mode operation, there exist a critial value of beam energy for the oscillation. By changing the condition at the SWS end, an enhanced performance of the K-band oversized BWO is observed in a low magnetic field region about 0.8T.

Design of Automatic Fire Prevention and Suppression System for Photovoltaic Connection Module (태양광 접속반의 자동 화재 예방 및 진압 시스템 설계)

  • Lee, Kang Won;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.33-38
    • /
    • 2022
  • A solar power generation system uses a solar module that collects solar radiation energy, a connecting board that collects DC power generated from the solar module, and a diode to prevent reverse current from flowing from an inverter to the solar module. The existing photovoltaic connection module consists of only fuses and diodes for reverse polarity and overcurrent blocking, and does not have fire diagnosis, prevention, and suppression functions in the event of a fire. To solve this problem, this paper presents a method to monitor the internal state of the photovoltaic connection module using several sensors and to prevent and extinguish a fire using solenoid valves and fire extinguishing agents when a fire is detected. Through the experiment, it was confirmed that the proposed method normally suppresses the fire in event of a fire.

Sinusoidal Map Jumping Gravity Search Algorithm Based on Asynchronous Learning

  • Zhou, Xinxin;Zhu, Guangwei
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.332-343
    • /
    • 2022
  • To address the problems of the gravitational search algorithm (GSA) in which the population is prone to converge prematurely and fall into the local solution when solving the single-objective optimization problem, a sine map jumping gravity search algorithm based on asynchronous learning is proposed. First, a learning mechanism is introduced into the GSA. The agents keep learning from the excellent agents of the population while they are evolving, thus maintaining the memory and sharing of evolution information, addressing the algorithm's shortcoming in evolution that particle information depends on the current position information only, improving the diversity of the population, and avoiding premature convergence. Second, the sine function is used to map the change of the particle velocity into the position probability to improve the convergence accuracy. Third, the Levy flight strategy is introduced to prevent particles from falling into the local optimization. Finally, the proposed algorithm and other intelligent algorithms are simulated on 18 benchmark functions. The simulation results show that the proposed algorithm achieved improved the better performance.

Identification of Internal Resistance of Microbial Fuel Cell by Electrochemical Technique and Its Effect on Voltage Change and Organic Matter Reduction Associated with Power Management System (전기화학적 기법에 의한 미생물연료전지 내부저항 특성 파악 및 전력관리시스템 연계 전압 변화와 유기물 저감에 미치는 영향)

  • Jang, Jae Kyung;Park, Hyemin;Kim, Taeyoung;Yang, Yoonseok;Yeo, Jeongjin;Kang, Sukwon;Paek, Yee;Kwon, Jin Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.220-228
    • /
    • 2018
  • The internal resistance of microbial fuel cell (MFC) using stainless steel skein for oxidizing electrode was investigated and the factors affecting the voltage generation were identified. We also investigated the effect of power management system (PMS) on the usability for MFC and the removal efficiency of organic pollutants. The performance of a stack microbial fuel cell connected with (PMS) or PMS+LED was analyzed by the voltage generation and organic matter reduction. The maximum power density of the unit cells was found to be $5.82W/m^3$ at $200{\Omega}$. The maximum current density was $47.53A/m^3$ without power overshoot even under $1{\Omega}$. The ohmic resistance ($R_s$) and the charge transfer resistance ($R_{ct}$) of the oxidation electrode using stainless steel skein electrode, were $0.56{\Omega}$ and $0.02{\Omega}$, respectively. However, the sum of internal resistance for reduction electrode using graphite felts loaded Pt/C catalyst was $6.64{\Omega}$. Also, in order to understand the internal resistance, the current interruption method was used by changing the external resistance as $50{\Omega}$, $300{\Omega}$, $5k{\Omega}$. It has been shown that the ohm resistance ($R_s$) decreased with the external resistance. In the case of a series-connected microbial fuel cell, the reversal phenomenon occurred even though two cells having the similar performance. However, the output of the PMS constantly remained for 20 hours even when voltage reversal occurred. Also the removal ability of organic pollutants (SCOD) was not reduced. As a result of this study, it was found that buffering effect for a certain period of time when the voltage reversal occurred during the operation of the microbial fuel cell did not have a serious effect on the energy loss or the operation of the microbial fuel cell.

LNG-Vessels Hybrid Engine Seawater Desalination Complex System (LNG 선박 하이브리드 엔진 및 해수 담수화 복합 시스템)

  • Lim, Jae Jun;Lee, Dong-Heon;Byun, Gi-Sik;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.663-664
    • /
    • 2016
  • Temperature difference power generation using sea water is a method repeatedly closed liquefaction and gasification by using the ammonia (refrigerant) of the deep sea water and surface water with a temperature difference between turning the turbine. The larger the temperature difference between the nature of the temperature characteristic energy generation development, the better. This is the story that the surface waters of the deep-water temperature difference is large. But the winter is not large temperature difference between surface water and deep water has lowered energy efficiency. And desalination technologies accounted for 97% of the earth, but we can not eat the technology to convert sea water into fresh water, fresh water produced by the desalination technology that is available for various industries such as irrigation, drinking water in the vessel.In this paper, LNG transport vessels, based on the LNG transport ship to the temperature difference power generation using cold energy of thermal energy and LNG marine diesel engines, which use the existing order to improve the temperature of the surface waters of the season that is the current problem we propose that a complex development of desalination and desalination of seawater freezing research into hybrid research and utilizing the cold energy of the engine.

  • PDF