• Title/Summary/Keyword: Current power generation

Search Result 1,270, Processing Time 0.024 seconds

A Method for Estimating an Instantaneous Phasor Based on a Modified Notch Filter

  • Nam Soon-Ryul;Sohn Jin-Man;Kang Sang-Hee;Park Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.279-286
    • /
    • 2006
  • A method for estimating the instantaneous phasor of a fault current signal is proposed for high-speed distance protection that is immune to a DC-offset. The method uses a modified notch filter in order to eliminate the power frequency component from the fault current signal. Since the output of the modified notch filter is the delayed DC-offset, delay compensation results in the same waveform as the original DC-offset. Subtracting the obtained DC-offset from the fault current signal yields a sinusoidal waveform, which becomes the real part of the instantaneous phasor. The imaginary part of the instantaneous phasor is based on the first difference of the fault current signal. Since a DC-offset also appears in the first difference, the DC-offset is removed trom the first difference using the results of the delay compensation. The performance of the proposed method was evaluated for a-phase to ground faults on a 345kV 100km overhead transmission line. The Electromagnetic Transient Program was utilized to generate fault current signals for different fault locations and fault inception angles. The performance evaluation showed that the proposed method can estimate the instantaneous phasor of a fault current signal with high speed and high accuracy.

Control Technique of a Utility Interactive Photovoltaic Generation System (계통연계형 태양광발전 시스템의 제어기법)

  • Kim, Dae-Gyun;Jeon, Kee-Young;Hahm, Nyun-Gun;Lee, Sang-Chip;Oh, Bong-Hwan;Chung, Choon-Byeong;Kim, Yong-Joo;Han, Kyung-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.54-56
    • /
    • 2005
  • The paper proposes the solar photovoltaic power generation system method for photovoltaic system to solve the power shortage due the sudden power demand. So that supplied electric power to system at appearance during surplus electric power minute and unit moment link driving with common use system is available, digital PLL circuit system voltage through composition and phase of solar photovoltatic power generation system to do synchronization do. Feed forward controller was applied to get fast current response Solar cell that is changed by solar radiation always kept the maximum output when it used Step up chopper. The dynamic character had checked through simulation used Matlab Sumulink and confirmed through an experiment.

  • PDF

Remote Fault Diagnosis Method of Wind Power Generation Equipment Based on Internet of Things

  • Bing, Chen;Ding, Liu
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.822-829
    • /
    • 2022
  • According to existing study into the remote fault diagnosis procedure, the current diagnostic approach has an imperfect decision model, which only supports communication in a close distance. An Internet of Things (IoT)-based remote fault diagnostic approach for wind power equipment is created to address this issue and expand the communication distance of fault diagnosis. Specifically, a decision model for active power coordination is built with the mechanical energy storage of power generation equipment with a remote diagnosis mode set by decision tree algorithms. These models help calculate the failure frequency of bearings in power generation equipment, summarize the characteristics of failure types and detect the operation status of wind power equipment through IoT. In addition, they can also generate the point inspection data and evaluate the equipment status. The findings demonstrate that the average communication distances of the designed remote diagnosis method and the other two remote diagnosis methods are 587.46 m, 435.61 m, and 454.32 m, respectively, indicating its application value.

Self-Consumption Solar PV Economic Rate Analysis for RE100 Companies in Korea (한국 RE100 기업의 자가소비 태양광 발전 경제적 비율 분석)

  • Jong Yi Lee;Kyung Nam Kim
    • Current Photovoltaic Research
    • /
    • v.11 no.4
    • /
    • pp.134-143
    • /
    • 2023
  • Efforts are being made to respond to global warming. Interest in and demand for the private sector-led RE100 campaign is also increasing. Self-built solar power generation, one of the implementation tools for RE100, is not expanding. However, it can be an economical means of implementation in the long run. In this study, we intend to analyze the impact on the optimal ratio of self-solar power generation using HOMER simulation. OPR defines the optimal solar power generation ratio and looks into what changes there are in the optimal solar power ratio when self-power consumption increases and external power purchase price changes. As a result, the optimal rate of self-solar power generation has a low impact even if self-power consumption increases. As the external power unit price increases, the optimal ratio increases, and at a power unit price of 100 KRW/kWh, OPR is 24%; at 200 KRW/kWh OPR is 31%; and at 300 KRW/kWh OPR is 34%. This shows that the electricity price replaced during the life cycle has a high impact on the economic feasibility of solar power generation. However, when the external power unit price reached a certain level, the increase in OPR decreased. This shows that it is difficult for domestic companies to achieve RE100 based on the economic feasibility of solar energy alone. Therefore, efforts are needed to supply renewable energy in the public sector.

A New Solar Energy Conversion System Implemented using Single Phase Inverter (새로운 방식의 단상 인버터를 이용한 태양광 시스템 구현)

  • Hong Jeng-Pyo;Kim Tae-Hwa;Won Tae-Hyun;Kwon Soon-Jae;Hong Soon-Ill;Kim Jong-Dal
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.488-491
    • /
    • 2006
  • In this paper proposed method of maximum power point tracking using boost converter for a connected single phase inverter with photovoltaic system. The maximum power point tracking control is based on generated circuit control MOSFET switch of boost converter and single phase inverter uses predicted current control to control four IGBT's switch in full bridge. The predicted current control provide current with sinusoidal wave shape and inphase with voltage. The generation control circuit allows each photovoltaic module to operate independently at peak capacity, simply by detecting of the output power of the system. Furthermore, the generation control circuit attenuates low-frequency ripple voltage, which is caused by the full-bridge inverter, across the photovoltaic modules. Consequently, the output power of system is increased due to the increase in average power generated by the photovoltaic modules. The effectiveness of the proposed inverter system is confirmed experimentally and by means of simulation.

  • PDF

Theory of Generation Linewidth in Spin-torque Nano-sized Auto-oscillators

  • Kim, Joo-Von;Tiberkevich, Vasil;Slavin, Andrei N.
    • Journal of Magnetics
    • /
    • v.12 no.2
    • /
    • pp.53-58
    • /
    • 2007
  • Theory of the generation linewidth of a current-driven spin-torque magnetic nano-oscillator in the presence of thermal fluctuations has been developed and a simple analytical formula for the generation linewidth in the supercritical regime of generation has been derived. It is shown that the strong dependence of the oscillator frequency on the precession power leads to substantial broadening of the generation linewidth of a spin-torque oscillator compared to the case of a linear oscillator, i.e. an oscillator with power-independent generation frequency. The relation between the nonlinearity-induced broadening of the generation linewidth and the nonlinearity-induced increase of the phase-locking band of a spin-torque oscillator to an external microwave signal has been revealed. The derived expression for the generation linewidth predicts a linewidth minimum when the nano-contact is magnetized at a certain angle to its plane, at which the nonlinear frequency shift vanishes. This result is in good agreement with recent experiments.

Quench Protection System for the KSTAR Toroidal Field Superconducting Coil

  • Lee, Dong-Keun;Choi, Jae-Hoon;Jin, Jong-Kook;Hahn, Sang-Hee;Kim, Yaung-Soo;Ahn, Hyun-Sik;Jang, Gye-Yong;Yun, Min-Seong;Seong, Dae-Kyoung;Shin, Hyun-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.178-183
    • /
    • 2012
  • The design of the integrated quench protection (QP) system for the high current superconducting magnet (SCM) has been fabricated and tested for the toroidal field (TF) coil system of the Korea Superconducting Tokamak Advanced Research (KSTAR) device. The QP system is capable of protecting the TF SCM, which consists of 16 identical coils serially connected with a stored energy of 495 MJ at the design operation level at 35.2 kA per turn. Given that the power supply for the TF coils can only ramp up and maintain the coil current, the design of the QP system includes two features. The first is a basic fast discharge function to protect the TF SCM by a dump resistor circuit with a 7 s time constant in case of coil quench event. The second is a slow discharge function with a time constant of 360 s for a daily TF discharge or for a stop demand from the tokamak control system. The QP system has been successfully tested up to 40 kA with a short circuit and up to 34 kA with TF SCM in the second campaign of KSTAR. This paper describes the characteristics of the TF QP systems and test results of the plasma experiment of KSTAR in 2009.

Effects of an Angle Droop Controller on the Performance of Distributed Generation Units with Load Uncertainty and Nonlinearity

  • Niya, M.S. Koupaei;Kargar, Abbas;Derakhshandeh, S.Y.
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.551-560
    • /
    • 2017
  • The present study proposes an angle droop controller for converter interfaced (dispatchable) distributed generation (DG) resources in the islanded mode of operation. Due to the necessity of proper real and reactive power sharing between different types of resources in microgrids and the ability of systems to respond properly to abnormal conditions (sudden load changes, load uncertainty, load current disturbances, transient conditions, etc.), it is necessary to produce appropriate references for all of the mentioned above conditions. The proposed control strategy utilizes a current controller in addition to an angle droop controller in the discrete time domain to generate appropriate responses under transient conditions. Furthermore, to reduce the harmonics caused by switching at converters' output, a LCL filter is used. In addition, a comparison is done on the effects that LCL filters and L filters have on the performance of DG units. The performance of the proposed control strategy is demonstrated for multi islanded grids with various types of loads and conditions through simulation studies in the DigSilent Power Factory software environment.

Reduction of Heat Generation from Junction Box in 3 kW Photovoltaic Power Generation System

  • Yun, Jung-Hyun;Sun, Ki-Ju;Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.21-24
    • /
    • 2016
  • A junction box used in a 3 kW photovoltaic power generation system plays a role in collecting and supplying the direct current voltage produced by photovoltaic modules to an inverter. It is also used for facilitating maintenance checks and protecting the module and inverter by keeping the voltage constant. As for the junction box, using it in a parallel connection creates a difference between the setup modules. In order to compensate, an inverse voltage diode is used. But the high-power created through the solar generator can be delivered to the inverter through the inverter regularly. Therefore, a component can break down due to excess heat. And consequently short circuits and electric leakage occurs. In this study, using a junction box that enabled the bypass of high electric power, it was possible to reduce heat generation by approximately 35℃ when compared to a standard junction box.

A Current Control Algorithm for Torque Ripple Reduction of Four-Switch Three-Phase Brushless DC Motors (4스위치 3상 BLDC 전동기의 토크 리플 저감을 위한 전류제어 알고리즘)

  • 박상현;김태성;이병국;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.126-133
    • /
    • 2004
  • In this paper, a new current control algorithm is proposed for four-switch three-phase brushless DC(BLDC) motor drives, which are suitable for low cost applications. A current reference generation scheme is developed and implemented to obtain high performance characteristics in the four-switch system, such as small torque ripple and fast dynamic speed/torque response. Especially, the proposed scheme can successfully reduce the torque ripple during commutations, so that it can be expected that the four-switch system can be much more practically applied for the industrial application areas.