• Title/Summary/Keyword: Current limiting characteristics

Search Result 324, Processing Time 0.027 seconds

A solar Cell Fiber using Semi-conductive Polymers (반도체형 고분자를 이용한 태양전지섬유)

  • Song, Jun-Hyung;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.20 no.1
    • /
    • pp.44-47
    • /
    • 2008
  • Organic semi-conductive materials have characteristics such as the advantages of easy formability, low-cost and diversity along with moderate semi-conductive properties. In this paper, we developed a flexible organic-inorganic hybrid solar cell fiber. First, we made a solar cell on the glass and attached the solar cell on the glass fiber similarly. In the latter case, thermal deposition method was employed in order to effectively apply ITO onto fiber surface. The amount of ITO was controlled by varying the temperature from 25, 150 to $300^{\circ}C$. Optimum result was obtained at $150^{\circ}C$ where maximize the deposition amount without significant decomposition of ITO. Despite of maximum open circuit voltage of 0.39V, the resulting current was quite unstable and weak, limiting realistic applications. It was, however, concluded that the flexible solar cell fiber developed showed a possibility of low-weight application from functional clothing for military to space suit mainly due to flexibility and thus wear ability.

Effect of Electrolyte Type on Shape and Surface Area Characteristics of Dendritic Cu Powder (도금전해액의 종류에 따른 수지상 구리 분말의 형상 및 표면적 특성)

  • Park, Da Jung;Park, Chae-Min;Kang, Nam Hyun;Lee, Kyu Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.416-422
    • /
    • 2016
  • We have investigated the effects of applied potential, deposition time and electrolyte types on shapes and physical properties of Cu dendrites by potentiostatic electrodeposition. Finer shape of dendrites was observed at less cathodic potential by 100mV than at the limiting current, due to 'effective overpotential'. The shape of copper dendrite is related to the deposition time, too. The dendrite depositing for 10 min showed the finest shape. The finer dendrite has the less apparent density and the larger specific surface area. Dendrite from chloride solution has the lowest density and the largest surface area among three plating solutions, sulfate, chloride and pyrophosphate.

Surface Analysis and Electrical Properties for Complex with Concentration of Metal ion in LB Ultra-thin Films Using IMI-O Polymer (IMI-O 고분자 LB막의 금속 이온의 착체 농도에 따른 전기특성 및 표면분석)

  • Jung, S.B.;Yoo, S.Y.;Park, J.C.;Kwon, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1711-1713
    • /
    • 2000
  • We fabricated an IMI-O polymer containing an imidazole group that could form a complex structure between the monolayer and the metal ions at the air-water interface. Also, the surface analysis and the electrical properties of metal ion complex of Langmuir-Blodgett (LB) films were investigated by using $\pi$-A isotherms. Atomoic force microscopy (AFM), current-voltage (I-V) measurements. In the $\pi$-A isotherms the molecular area was expanded with $Fe^{3+}$ concentration increase. It is considered that the expansion of molecular area is due to electrostatic repulsion between the polymer chains and hydrophobic increase of ionic strength. In the I-V characteristics, it is found that the limiting area has effects on the change of conductivity. And, the dielectric relaxation time decreased for increase of the $Fe^{3+}$ concentration.

  • PDF

Material Design Using Multi-physics Simulation: Theory and Methodology (다중물리 전산모사를 이용한 물성 최적화 이론 및 시뮬레이션)

  • Hyun, Sangil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.767-775
    • /
    • 2014
  • New material design has obtained tremendous attention in material science community as the performance of new materials, especially in nano length scale, could be greatly improved to applied in modern industry. In certain conditions limiting experimental synthesis of these new materials, new approach by computer simulation has been proposed to be applied, being able to save time and cost. Recent development of computer systems with high speed, large memory, and parallel algorithms enables to analyze individual atoms using first principle calculation to predict quantum phenomena. Beyond the quantum level calculations, mesoscopic scale and continuum limit can be addressed either individually or together as a multi-scale approach. In this article, we introduced current endeavors on material design using analytical theory and computer simulations in multi-length scales and on multi-physical properties. Some of the physical phenomena was shown to be interconnected via a cross-link rule called 'cross-property relation'. It is suggested that the computer simulation approach by multi-physics analysis can be efficiently applied to design new materials for multi-functional characteristics.

PWM Control of Reduced Switch Z-Source Inverter (스위치 저감형 Z-Source Inverter PWM 제어)

  • Kim, Seong-Hwan;Park, Tae-Sik
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.53-57
    • /
    • 2019
  • In this paper, we propose a new Z-source inverter structure to reduce switching elements and PWM pulse control method. Z-network is connected between the inverter backplane and ground, rather than between the DC voltage and the inverter in an improved Z-source inverter. And the improved Z-source inverter has the advantages of limiting the capacitor inrush current and reducing the capacitor voltage stress. We have proposed a topology of a new type of switch-reduced improved Z-source inverter that reduces the number of switches from six to four in an improved Z-source inverter and developed a PWM control method suitable for the proposed topology. The characteristics and the performance of the proposed method were verified by using PSIM simulation.

Time-Series Forecasting Based on Multi-Layer Attention Architecture

  • Na Wang;Xianglian Zhao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • Time-series forecasting is extensively used in the actual world. Recent research has shown that Transformers with a self-attention mechanism at their core exhibit better performance when dealing with such problems. However, most of the existing Transformer models used for time series prediction use the traditional encoder-decoder architecture, which is complex and leads to low model processing efficiency, thus limiting the ability to mine deep time dependencies by increasing model depth. Secondly, the secondary computational complexity of the self-attention mechanism also increases computational overhead and reduces processing efficiency. To address these issues, the paper designs an efficient multi-layer attention-based time-series forecasting model. This model has the following characteristics: (i) It abandons the traditional encoder-decoder based Transformer architecture and constructs a time series prediction model based on multi-layer attention mechanism, improving the model's ability to mine deep time dependencies. (ii) A cross attention module based on cross attention mechanism was designed to enhance information exchange between historical and predictive sequences. (iii) Applying a recently proposed sparse attention mechanism to our model reduces computational overhead and improves processing efficiency. Experiments on multiple datasets have shown that our model can significantly increase the performance of current advanced Transformer methods in time series forecasting, including LogTrans, Reformer, and Informer.

A study on characteristics for a resistive SFCL with gold layer (Gold층을 가진 저항형 초전도 한류기에 대한 특성연구)

  • Choi, Hyo-Sang;Hyun, Ok-Bae;Kim, Hye-Rim;Hwang, Si-Dole;Kim, Sang-Joon
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.348-351
    • /
    • 1999
  • We investigated current limiting properties for an SFCL of YBCO thin film coated with an Au layer. The YBCO film of 1 mm wide and 400 nm thick could carry the current 9.6 A$_{peak}$ without quench. The SFCL limited the fault current below 7.6 A$_{peak}$, which otherwise increases above 65 A$_{peak}$ and melted down at the potential fault current of about 100 A$_{peak}$ which is 10 times greater than the quench current. This means that the Au layer successfully protected the superconducting film by dispersing the heat generated at hot spots and electrically shunting the YBCO film.

  • PDF

Evaluation of Biogas Production Rate by using Various Electrodes Materials in a Combined Anaerobic Digester and Microbial Electrochemical Technology (MET) (미생물 전기화학 기술이 적용된 단일 혐기성소화조에서 전극재질에 따른 바이오가스 생성 효율 평가)

  • Shin, Wonbeom;Park, Jungyu;Lee, Beom;Kim, Yonggeun;Jun, Hangbae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.2
    • /
    • pp.82-88
    • /
    • 2017
  • MET (Microbial Electrochemical Technology), such as MFC (Microbial Fuel Cell) and MEC (Microbial Electrolysis Cell), is a promising technology for producing sustainable biogas from an anaerobic digester (AD). At current stage, however, the most likely limiting factors, large internal resistances, should be overcome for successful scale up of this technology. Various researchers reported that application of electrode materials containing high current density, increase of ion strength and conductivity, configuration of electrode are good methods for minimizing internal resistances. Recently, stainless steel is receiving great attention because of not only high performance and durability but also low cost. Therefore, in this study, we evaluate electrochemical characteristics and biogas production rate using various electrode materials and configuration (graphite carbon coated with catalysts ($GC-C_M$) or not (GC), stainless steel mesh (SUS-M) and plate (SUS-P)). As the results, current densities of $GC-C_M$, GC, SUS-P, SUS-M were 2.03, 1.36, 1.04, $1.13A/m^2$, respectively. Methane yields of $GC-C_M$, GC, SUS-P, SUS-M were 0.27, 0.14, 0.19, 0.21 $L-CH_4/g-COD_{rem}$., respectively. Stainless steel shows high current density and methane yield, which are similar as graphite carbon coated with catalysts.

Investigation of Korean Forest Carbon Offset Program : Current Status and Cognition of Program Participants (산림탄소상쇄제도의 사업참여자 인식 및 현황 분석)

  • Sa, Yejin;Woo, Heesung;Kim, Joonsoon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.165-176
    • /
    • 2022
  • To raise awareness of carbon reduction in climate change, the Korea Forest Service has developed and adopted a forest carbon offset program, which aims to reduce carbon levels based on forest management. However, to maintain the forest carbon offset program, challenges such as the lack of a forest monitoring system to manage and maintain the program, must be faced. In this context, we investigated the limitations of conducting forest carbon offset programs using a number of interview techniques, including in-depth interview and questionnaire survey methods. The questionnaire surveys were developed based on the results of a literature review along with a preinterview and in-depth survey of the people in charge of the forest carbon offset program. The Irving Seidman technique was adopted for the in-depth interviews. Additionally, descriptive and frequency analyses were conducted to identify the characteristics of perception. Lastly, logistic regression was used to identify the limiting factors that affect the willingness to perform forest carbon offset monitoring activity. Results showed that the project managers or people in charge of the forest carbon offset program lacked expertise in forest carbon offset programs, which negatively affected their willingness to perform monitoring activity. Additionally, the study revealed a number of limiting factors that hindered the monitoring of forest carbon offset projects. Improving understanding using the approaches presented in this study may contribute to increasing the benefits associated with the forest carbon offset program in South Korea.

Characteristics and Current Status of Well-being Menus Served in Contract-managed Workplace Foodservice (산업체 위탁급식소의 웰빙 메뉴 특성 및 현황)

  • Kwon, Soo-Youn;Lee, Sang-Mook;Lee, Young-Mi;Yoon, Ji-Hyun
    • Journal of the Korean Dietetic Association
    • /
    • v.16 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • This study was conducted to characterize well-being menus and to examine the service frequency and profitability of those served in the contract-managed workplace foodservice. In-depth interviews were conducted with six persons who were in charge of menu management in the headquarters of six different foodservice management companies during March, 2007. In addition, 122 set menus consisting of 777 menu items, which were on one month menus served during January to April, 2007, were collected from three workplace operations managed by three different foodservice management companies. As a result of the in-depth interviews, four categories of well-being menu items were extracted: 'medicinal functional menu item', 'environmentally-friendly menu item', 'natural food menu item', and 'harmful components-limiting menu item'. Accordingly, a well-being menu item was defined as 'a menu item with increased nutrition value or decreased health risk by changing food material or cooking method'. When the menu items (n=777) were analyzed by applying the definition and categories, approximately 14% of the items were identified as well-being menu items and most of them were either medicinal functional (65%) or natural food menu items (33%). Approximately 59% of the 122 set menus included at least one well-being menu item, and therefore they were named the well-being set menus. These well-being set menus, however, were not significantly different from the rest set menus in terms of profitability as measured by the contribution margin. The results of this study could be useful for foodservice management companies to develop and plan well-being menus targeting workplace foodservice operations.