• Title/Summary/Keyword: Current harmonics

Search Result 897, Processing Time 0.023 seconds

1-stage Asymmetrical LLC Resonant Converter with Low Voltage Stress Across Switching Devices (낮은 전압 스트레스의 스위치를 가지는 1-stage 비대칭 LLC 공진형 컨버터)

  • Kim, Choon-Taek;Kim, Seong-Ju;La, Jae-Du;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1101-1107
    • /
    • 2013
  • A light emitting diodes(LED) lighting has been increasingly used due to its low power consumption, long life time, high efficiency, and environment friendly characteristics. Also various power converters has been applied to drive these LED lighting. Among many power converters, a LLC resonant converter could be applied for LED lighting because of its high efficiency and high power density. Furthermore, the function of power factor correction(PFC) might be added. In this paper, 1-stage asymmetrical LLC resonant converter is proposed. The proposed converter performs both input-current harmonics reduction and PFC using the discontinuous conduction mode(DCM). The proposed 1-stage LLC resonant converter approach has the lower voltage stress across switching devices and achieve the zero voltage switching(ZVS) in switching devices. To verify the performance of the proposed converter, simulation and experimental results from a 300[W] prototype are provided.

Characteristics Analysis of Power Capacitor at Sag & Swell (순간적인 전압강하 및 순간 전압 융기 발생시 전력용 커패시터의 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Kim, Il-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.21-28
    • /
    • 2009
  • Power capacitor has been used to compensate for the low power factor of inductive load and to reduce harmonics generated by the power conversion device with reactor. Power quality is mainly referred to the voltage quality and it is very important for the stable operation of load. But if voltage rms is temporary changed, it acts on capacitor as an electrical stress. In this paper, we analyzed that capacitor can be given by voltage, current and capacity's variance under the sag and swell condition. If reactor is connected at capacitor, sag can be aside from the question. But it can act an amount of stress on capacitor in the swell region.

Oscillation Characteristics of the Multi-Layered VCO for using 960 MHz Band (960 MHz 다층구조 VCO 발진특성)

  • Rhie, Dong-Hee;Park, Gwi-Nam;Lee, Hun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.653-656
    • /
    • 2002
  • In this paper, we present the simulation results of multi-layer VCO(voltage controlled oscillator), which is composed of resonator, oscillator, and buffer circuit, using EM simulator and nonlinear RF circuit simulator. EM simulator is used for obtaining the EM(Electromagnetic) characteristics of conductor pattern as well as designing the multi-layer VCO. Obtained EM characteristics were used as real components in nonlinear RF circuit simulation. Finally the overall VCO was simulated by the nonlinear RF circuit simulator. The material for the circuit pattern was Ag and the dielectric was DuPont 951AT, which will be applied for LTCC process. The structure of multi-layer VCO is constructed with 4 conducting layer. Simulated results showed that the output level was about 4.5 [dBm], the phase noise was -104 [dBc/Hz] at 30 [kHz] offset frequency, the harmonics -8 dBc, and the control voltage sensitivity of 30 [MHz/V] with a DC current consumption of 9.5 [mA]. The size of VCO is $6{\times}9{\times}2$ mm(0.11[cc]).

  • PDF

Advanced Small-Signal Model of Multi-Terminal Modular Multilevel Converters for Power Systems Based on Dynamic Phasors

  • Hu, Pan;Chen, Hongkun;Chen, Lei;Zhu, Xiaohang;Wang, Xuechun
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.467-481
    • /
    • 2018
  • Modular multilevel converter (MMC)-based high-voltage direct current (HVDC) presents attractive technical advantages and contributes to enhanced system operation and reduced oscillation damping in dynamic MMC-HVDC systems. We propose an advanced small-signal multi-terminal MMC-HVDC based on dynamic phasors and state space for power system stability analysis to enhance computational accuracy and reduce simulation time. In accordance with active and passive network control strategies for multi-terminal MMC-HVDC, the matchable small-signal stability models containing high harmonics and dynamics of internal variables are conducted, and a related theoretical derivation is carried out. The proposed advanced small-signal model is then compared with electromagnetic-transient and traditional small-signal state-space models by adopting a typical multi-terminal MMC-HVDC network with offshore wind generation. Simulation indicates that the advanced small-signal model can successfully follow the electromechanical transient response with small errors and can predict the damped oscillations. The validity and applicability of the proposed model are effectively confirmed.

Characteristic of Induction Motor Drives Fed by Three Leg and Five Leg Inverters

  • Talib, Md. Hairul Nizam;Ibrahim, Zulkifilie;Rahim, Nasrudin Abd.;Hasim, Ahmad Shukri Abu
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.806-813
    • /
    • 2013
  • This paper aims to compare the performance of three phase induction motor drives using Five Leg Inverter (FLI) and Three Leg Inverter (TLI) configurations. An Indirect Field Oriented Control (IFOC) method using a TLI is well established and incorporated for high performance speed drives in various industries. The FLI dual motor drive system on the other hand shows good workability in the independent control of two induction motor drives simultaneously. In this experiment, the IFOC method is utilized for both drive systems, and Space Vector Pulse Width Modulation (SVPWM) is used to generate pulses for both inverters. For the FLI, the Double Zero Sequence (DZS) Injection technique is used to generate the modulation signal. The complete experiment setup is done by using a DSpace 1103 controller board. The individual motor performances are analyzed using similar schemes, equipment setups and controller parameter values. The results show similar speed performance response capability between the single motor operation using a TLI system and the two motor operation using a FLI system based on the variable speed range either in forward or reverse operation. They also show similar load rejection abilities. However, the single motor with a TLI has a better power quality aspect such as ripple current and total harmonics distortion (THD).

A Study on the Properties of the Dual-mode Plasma Torch System for Melting the Non-conductive Waste (비전도성 폐기물 용융처리를 위한 혼합형 플라즈마토치 시스템 특성 연구)

  • Moon, Young-Pyo;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.73-80
    • /
    • 2016
  • The preliminary test for the dual mode plasma torch system was carried out to explore the operation properties in advance. The dual mode plasma torch system that is able to operate in transferred, non-transferred, or dual mode is very adequate for melting the mixed wastes including nonconductive materials such as concrete, asbestos, etc. since it exploits both the high efficiency of heat transfer to the melt in transferred mode and stable operation in non-transferred mode. Also, system operation including restarting is reliable and very easy. A stationary melter with a refractory structure was designed and manufactured considering the melting behavior of slags to minimize the refractory erosion. The power supply for the dual mode plasma torch system built with high power insulated gate bipolar transistor (IGBT) modules has functions for both current control and voltage control and is sufficient to suppress the harmonics during the operation of the plasma torch. The power supply provides two different voltages for transferred operation and non-transferred. It is confirmed that the operation voltage in transferred is always higher than non-transferred. The dual mode plasma torch system was successfully developed and is under operation for a melting experiment to optimize operation data.

A Novel Design of an RF-DC Converter for a Low-Input Power Receiver

  • Au, Ngoc-Duc;Seo, Chulhun
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.191-196
    • /
    • 2017
  • Microwave wireless power transmission (MWPT) is a promising technique for low and medium power applications such as wireless charging for sensor network or for biomedical chips in case with long ranges or in dispersive media such. A key factor of the MWPT technique is its efficiency, which includes the wireless power transmission efficiency and the radio frequency (RF) to direct current (DC) voltage efficiency of RF-DC converter (which transforms RF energy to DC supply voltage). The main problem in designing an RF-DC converter is the nonlinear characteristic of Schottky diodes; this characteristic causes low efficiency, higher harmonics frequency and a change in the input impedance value when the RF input power changes. In this paper, rather than using harmonic termination techniques of class E or class F power amplifiers, which are usually used to improve the efficiency of RF-DC converters, we propose a new method called "optimal input impedance" to enhance the performance of our design. The results of simulations and measurements are presented in this paper along with a discussion of our design concerning its practical applications.

Extraction of Design Parameters through Electromagnetic and Dynamic Analysis of Slotless Double-side PMLSM system (양측식 영구자석 가동형 슬롯리스 직선 동기전동기의 전자기 특성 및 동특성 해석에 의한 설계정수 도출)

  • Jang, Won-Bum;Lee, Sung-Ho;Jang, Seok-Myeong;You, Dae-Joon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2135-2144
    • /
    • 2007
  • This paper presents system design of the slotless double-side Permanent Magnet Linear Synchronous Machine system (PMLSM) through magnetic field analysis and dynamic modeling. In our analysis, 2-D analytical treatments based on the magnetic vector potential were adopted to predict magnetic field with space harmonics by PM mover magnetization and stator winding current. From these, the design parameters such as inductance, Back-emf, and thrust are estimated. And, the electrical dynamic modeling including synchronous speed is completed by calculation of a DC link voltage in effort to obtain the accurate mechanical power from Space Vector Pulse Width Modulation(SVPWM). Therefore, the system design of PMLSM is performed from estimation of design parameters according to PM size and coil turns in magnetic field and from calculation of a DC link voltage to satisfy base speed and base thrust represented as the maximum output power in dynamic modeling. The estimated values from the analysis are verified by the finite element method and experimental results.

Power System Harmonic Estimation Based on Park Transform

  • Chen, Ya;Ji, Tianyao;Li, Mengshi;Wu, Qinghua;Wang, Xuejian
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.560-574
    • /
    • 2016
  • This paper presents a novel method for power system harmonic estimation based on the Park transform. The proposed method firstly extends the signal to a group of three-phase signals in a-b-c coordinate. Then, a linear fitting based method is adopted to estimate the fundamental frequency. Afterwards, the Park transform is utilized to convert the three-phase signals from a-b-c coordinate to d-q-0 coordinate. Finally, the amplitude and phase of a harmonic component of interest can be calculated using the d-axis and q-axis components obtained. Simulation studies have been conducted using matrix laboratory (MATLAB) and power system computer aided design/electromagnetic transients including direct current (PSCAD/EMTDC). Simulation studies in MATLAB have considered three scenarios, i.e., no-frequency-deviation scenario, frequency-deviation scenario and the scenario in the presence of inter-harminics. The results have demonstrated that the proposed method achieves very high accuracy in frequency, phase and amplitude estimation under noisy conditions, and suffers little influence of the inter-harmonics. Moreover, comparison studies have proved that the proposed method is superior to FFT and Interpolated FFT with the Hanning Window (IpFFTHW). Finally, a popular case in PSCAD/EMTDC has been employed to further verify the effectiveness of the proposed method.

New Control Scheme for LIDVR Considering Asymmetry Input Voltage Conditions (비대칭 입력 전압 상태를 고려한 LIDVR의 새로운 제어방법)

  • Han Chul-Woo;Kim Tae-Jin;Kang Dae-wook;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.510-514
    • /
    • 2002
  • Power Quality and reliability are becoming important issues for critical and sensitive loads. The recent growth in the use of impactive and nonlinear loads has caused many power quality problems such as voltage flicks, harmonics and unbalances, which may cause the modem automatic devices to fail, misoperate, or shut down. This paper deals with 7-Level H-Bridge Line-Interactive Dynamic Voltage Restorer (LIDVR) system. It has the power factor near to unity under normal source voltage, can compensate the harmonic current of the load and instant interruption, and has the fast response. Currently, most of the DVR design studies are based on the assumption of the balanced three-phase system. But, actually line fault occurred $1{\phi}\;{sag}\;or\;2{\phi}$ sag. Hence, proposed new control scheme compensate asymmetry input voltage. Finally, simulation results verify the proposed 7-Level H-Bridge LIDVR system.

  • PDF