• Title/Summary/Keyword: Current harmonic

Search Result 1,338, Processing Time 0.029 seconds

A Study on the Decision for External Water Level of a River Considering Sea Level Rise (해수면 상승을 고려한 하천 외수위 결정에 관한 연구)

  • Choo, Tai Ho;Yun, Gwan Seon;Kwon, Yong Been;Ahn, Si Hyung;Kim, Jong Gu
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.4
    • /
    • pp.604-613
    • /
    • 2016
  • The sea level of the Earth is rising approximately 2.0mm per year (global average value) due to thermal expansion of sea water, melting of glaciers and other causes by global warming. However, when it comes to design a river, the standard of design water level is decided by analyzing four largeness tide value and harmonic constant with observed tidal water level. Therefore, it seems the external water level needs to consider an increasing speed of the seawater level which corresponds to a design frequency. In the present study, the hourly observed tidal water level targeting 47 tidal stations operated by Korea Hydrographic and Oceanographic Administration (KHOA) from beginning of observation to 2015 per hour has been collected. The variation of monthly and yearly and increasing ratio have been performed divided 4 seas such as the Southern, East, Western, and Jeju Sea. Also, the external water level existing design for rivers nearby a coast was been reviewed. The current study could be used to figure out the cause of local seawater rise and reflect the external water level as basic data.

Effect of Harmonic Generation and Countermeasures (고조파발생에 따른 영향과 대책 연구)

  • Baek, Dong-Hyun
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.91-97
    • /
    • 2015
  • Skyscrapers, large business buildings, and IT consumers use many appliances, and the electrical power stems can cause fires by overheating. This can result in damaged capacitors, lost data, rising ground potential, and communication obstacles from linear or nonlinear high frequency. To make sure of that we investigated 7 spots of a building, among which 6-spots were fair but the other one needed high frequency control. Spots 3, 6, and 7 needed diagnostic workup, and spots 2, 3, and 5 considered 5 high frequency currents. A phase is all of good but the high frequency current is greater than the standard level except for spot 1. As a result, a zigzag transformer or active filter needs to be installed, and the efficiency needs to be upgraded by investigating load unbalance factors and power factors.

A Regeneration Inverter for Traction Applications with a Active Power Filter (능동전력필터를 가진 지하철 회생인버터 시스템)

  • Won, Chung-Yuen;Jang, Su-Jin;Kim, Yuen-Chung;Lee, Byoung-Kuk;Bae, Chang-Hwan;Kim, Yong-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.25-32
    • /
    • 2006
  • This paper proposes a regeneration inverter system, which can regenerate the excessive power form do bus line to ac source for traction system. The proposed regeneration inverter system for dc traction can reduce harmonics which are included to ac current source. The regeneration inverter is operated as two modes. In the regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and in the active power filter mode, it can compensate harmonic distortion produced by the rectifier substation. In this paper, the regeneration inverter uses PWM DC/AC inverter algorithm and the active power filter uses p-q theory. From the informative simulation and experimental results, which are performed wiith a prototype rated 3.7[kw], it can expected that the proposed system can be effectively applied in the real traction system rated 100[kw].

Hand-Held Power Quality Monitoring System for Factory Electrical Installation (공장 전기 설치를 위한 휴대용 전력품질 모니터링 시스템)

  • Choi, Sang-Yule
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.113-118
    • /
    • 2015
  • High-power semiconductor devices and microprocessors in factory electrical installation so sensitive to power quality measurements such as harmonic currents, voltage fluctuations, flicker, current imbalance. Therefore, the little change of power quality can influences the productivity of factory electrical machines. Troubleshooting these problems requires accurate measurements and analysis of power quality with monitoring instruments that can effectively locate issues and identify solutions. In this paper, the author presents hand-held power quality monitoring system to locate issues and identify solutions. The proposed system consists of two parts, One is to develop hand-held power meters by using NI(National Instrument) DAQ(Data Acquisition) and WLAN. Another is develop power quality monitoring MMI(Man-Machine Interface) using LabView software. To demonstrate the validity of the proposed algorithm, variable tests are carried out.

Low-Power and High-Efficiency Class-D Audio Amplifier Using Composite Interpolation Filter for Digital Modulators

  • Kang, Minchul;Kim, Hyungchul;Gu, Jehyeon;Lim, Wonseob;Ham, Junghyun;Jung, Hearyun;Yang, Youngoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.109-116
    • /
    • 2014
  • This paper presents a high-efficiency digital class-D audio amplifier using a composite interpolation filter for portable audio devices. The proposed audio amplifier is composed of an interpolation filter, a delta-sigma modulator, and a class-D output stage. To reduce power consumption, the designed interpolation filter has an optimized composite structure that uses a direct-form symmetric and Lagrange FIR filters. Compared to the filters with homogeneous structures, the hardware cost and complexity are reduced by about half by the optimization. The coefficients of the digital delta-sigma modulator are also optimized for low power consumption. The class-D output stage has gate driver circuits to reduce shoot-through current. The implemented class-D audio amplifier exhibited a high efficiency of 87.8 % with an output power of 57 mW at a load impedance of $16{\Omega}$ and a power supply voltage of 1.8 V. An outstanding signal-to-noise ratio of 90 dB and a total harmonic distortion plus noise of 0.03 % are achieved for a single-tone input signal with a frequency of 1 kHz.

Harmonics Control of Electric Propulsion System using Direct Torque Control (직접벡터제어방식을 사용하는 전기추진시스템의 고조파 제어)

  • Kim, Jong-Su;Oh, Sae-Gin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2618-2624
    • /
    • 2009
  • Harmonics (or distortion in wave form) has always existed in electrical power systems. It is harmless as long as its level is not substantial. However, with the recent rapid advancement of power electronics technology, so-called nonlinear loads, such as variable frequency drives for motor power/speed control, are increasingly finding their way to shipboard or offshore applications. In this paper a new approach to direct torque control (DTC) of induction motor drive is presented. In comparison with the conventional DTC methods the inverter switching frequency is constant and is dramatically increased, requiring neither any increase of the sampling frequency, nor any high frequency dither signal. The well-developed space vector modulation technique is applied to inverter control in the proposed DTC-based induction motor drive system, thereby dramatically reducing the current harmonics. As compared to the existing DTC approach with constant inverter switching frequency, the presented new approach does not invoke any concept of deadbeat control, thereby dramatically reducing the computations.

Modeling and Direct Power Control Method of Vienna Rectifiers Using the Sliding Mode Control Approach

  • Ma, Hui;Xie, Yunxiang;Sun, Biaoguang;Mo, Lingjun
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.190-201
    • /
    • 2015
  • This paper uses the switching function approach to present a simple state model of the Vienna-type rectifier. The approach introduces the relationship between the DC-link neutral point voltage and the AC side phase currents. A novel direct power control (DPC) strategy, which is based on the sliding mode control (SMC) for Vienna I rectifiers, is developed using the proposed power model in the stationary ${\alpha}-{\beta}$ reference frames. The SMC-based DPC methodology directly regulates instantaneous active and reactive powers without transforming to a synchronous rotating coordinate reference frame or a tracking phase angle of grid voltage. Moreover, the required rectifier control voltages are directly calculated by utilizing the non-linear SMC scheme. Theoretically, active and reactive power flows are controlled without ripple or cross coupling. Furthermore, the fixed-switching frequency is obtained by employing the simplified space vector modulation (SVM). SVM solves the complicated designing problem of the AC harmonic filter. The simplified SVM is based on the simplification of the space vector diagram of a three-level converter into that of a two-level converter. The dwelling time calculation and switching sequence selection are easily implemented like those in the conventional two-level rectifier. Replacing the current control loops with power control loops simplifies the system design and enhances the transient performance. The simulation models in MATLAB/Simulink and the digital signal processor-controlled 1.5 kW Vienna-type rectifier are used to verify the fast responses and robustness of the proposed control scheme.

Performance Improvement of a Grid-connected PWM Inverter using a Power Theory (전력 이론을 이용한 계통연계 PWM 인버터 시스템의 성능 개선)

  • Jung, Hea-Gwang;Lee, Kyo-Beum;Kang, Sin-Il;Lee, Hyen-Young;Kwon, Oh-Joeng;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.319-327
    • /
    • 2008
  • The demand of a three phase PWM inverter for the purpose of power control or grid-connecting is increasing. This inverter is connected to a grid through an L-filter or LCL-filter to reduce the harmonics caused by switching. An LCL-filter can reduce the harmonic of a low switching frequency and generate a satisfactory level of grid side current with a relatively low-inductance than an L-filter. But the additional poles caused by the LC part affects a stability problem due to induced resonance of the system. This paper presents a compensation method using a power theory to improve performance, the designed LCL-filter system and to reduce the stability problems caused by resonance. The effectiveness of the proposed algorithm is verified by simulations and experiments.

Analysis of Pole Ratio Effect of Magnetic Reducer (마그네틱 감속기의 극수비 영향 분석)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.277-283
    • /
    • 2020
  • In a concentric magnetic gear, which replaces the teeth of a mechanical gear with a permanent magnet, the polar ratio of the magnet that determines the reduction ratio affects the behavior of the magnetic gear dramatically. This study analyzed the density of transmission torque, the efficiency of torque considering the solid loss, and the torque quality, including the cogging characteristics using finite element analysis. When the pole number on the driving side was changed from two to five, it was confirmed that there was an optimal pole ratio, in which the transmission torque was maximized. Because eddy current generation density is proportional to the magnetic field, the transmission efficiency also shows a similar tendency to the transmission torque density, and the efficiency is more than 95% at a low gear ratio. The cogging characteristics due to the interaction of the permanent magnets with the limited number of poles are inversely proportional to the least common multiple between the number of magnets on the drive side and the number of modulator teeth. A test model was built for the transmission torque evaluation.

A Study on Identity Elements Expressed in the Inner Spaces of Dental Clinics - Focused on dental clinics in areas of Seoul and Busan - (치과의원의 실내 공간에 나타난 아이덴티티 요소에 관한 연구 - 서울과 부산지역의 치과의원 중심으로 -)

  • Choi, Sea-Young;Lee, Chang-No
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.1
    • /
    • pp.217-225
    • /
    • 2010
  • As life quality have grown today, People have been greatly interested in health. Moreover, new knowledge and concepts are being applied in the medical facility field and that makes the field expand constantly. Hereby, this research is a study on design elements of dental clinics and the research goals are to understand interior design of current dental clinics by investigation and analysis on furniture, closing materials, colors and so on, and to investigate esthetic and functional environments for dental clinics through analyzing upcoming trends of inner spaces of dental clinics. The investigation was conducted by visits to four clinics per each research area, where are in Busan area and opened after year 2000 and are located in Seoul and Busan. Though the spaces of dental clinics vary according to the characteristics of each clinic, it generally has a consultation room, a waiting room and an X-ray room. The closing materials that make patients feel at ease are used in the waiting room, and ones that make patients feel tidy and fresh are used in consultation spaces, spare spaces, and management spaces. In Seoul area, antique and harmonic colors are used, and modernistic colors are used in Busan area. Reception desks, chair units, sofas and sink storage shelfs are the common furniture in the clinic. We have learned what are mentioned above by research and investigation on the component characteristics of dental clinic spaces. Based on these, more systematical and in-depth research should be continued.