• Title/Summary/Keyword: Current force

Search Result 2,282, Processing Time 0.036 seconds

Development of the Program for levitation Force Analysis in a Superconducting Bulk (초전도 벌크의 부상력 해석 프로그램 개발)

  • 한승용;김우석;차귀수;한송엽
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.2
    • /
    • pp.20-24
    • /
    • 1999
  • The study of HTS(High Temperature Superconducting) bulk in magnetic levitation system requires the calculation of currents distribution in HTS bulk is very important to determine this forces. We have made computer program to find this current distribution and levitation force. J-E relation in HTS bulk is extremely nonlinear, so iteration method must be used to determine the current distribution. We developed the method to determine the current distribution in the unifrom-field model and, using this method, calculated the levitation force in permanent-magnet-levitation model.

  • PDF

The study of force control of servogun by using feedback current of the servo-motor (서보 모터의 피드백 전류를 이용한 서보건의 가압력 제어에 관한 연구)

  • 이용석;김태형;이세헌;이철구
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.126-128
    • /
    • 2003
  • Force is one of the most important variables with welding current and welding time in resistance spot welding. But a good farce control method hasn't been come out on servogun resistance spot welding system. In this study, we prove the feedback current of the servo-motor can be used to an excellent force measuring sensor and the force can be also controlled by the feedback current.

  • PDF

A Study for the Improvement of Weld Quality Through Force Control of Servo Gun in Resistance Spot Welding using Robot (저항 점 용접 로봇에서 서보건의 가압력 제어를 통한 용접 강도 향상에 대한 연구)

  • Park, Young-Whan;Lee, Jong-Gu;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.24 no.6
    • /
    • pp.13-20
    • /
    • 2006
  • Resistance spot welding is widely used for joining sheet metals in the automotive manufacturing process. Recently, servo-gun is used to increase the productivity and precise control the acting force. However, force control mechanisms have not been investigated with servo-guns until now. In this paper, it is proved that servo-motor current is proportional to torque and by experiment, experimental equation between servo-motor current and electrode force was derived. Algorithm for feedback control of electrode force was suggested using current measurement. In addition, applying soft touch method to this system the impact between electrode and specimen, which is the problem of air gun, could be reduced. Indentation made the force decrease in holding time of resistance spot welding. In order to overcome this problem, force compensation using the servo gun was used and it improved weld strength in good welding current range.

Friction Characterization of Feed Drive Systems using Feed Motor Current (이송전류신호를 이용한 이송계의 마찰특성에 관한 연구)

  • 김기대;조현우;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.249-253
    • /
    • 1994
  • In machine tools, frictional force exists between the table and the bed, and in ballscrews. In this paper, feed motor current is used to measure the motor torque and frictional force. A hall sensor is used to measure the feed motor current. Some frictional pheonomina in feed drice systems, such as, the relationship between feedrate and frictional force, lubrication conditions and frictional force, and feed direction and frictional force, are obtained. Generally, the friction behavior is in good agreement with Stribeck's curve. However, the data shows significant scatter when feedrate is high.

  • PDF

Design and Analysis of Eddy-Current Braker for High-Speed Train (고속전철 와전류 제동장치 설계와 특성해석 및 실험)

  • 정수진;강도현;김동희
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.659-663
    • /
    • 2002
  • The brake systems of high-speed train are to be equipped with three different brake systems, such as regenerative brake with regenerative feedback in driving car, a pneumatic disc brake, and non-contact linear eddy-current brake(ECB). The regenerative brake and the pneumatic disc brake are acting on the wheels. Their achievable braking force depends on the adhesive coefficient, which is influenced by the weather condition and speed, between the wheel and The linear eddy current brake gets an economical solution in the high-speed train because of the independence of the adhesive coefficient, no maintenance needed. and the good control characteristics. The braking force and the normal force of ECB for korean high-speed train are analysed by the 2D FEM(Finite Element Method). Finally the normal force is compared with the experiential values to verify the analysis.

Design of a Hybrid Controller to Eliminate the Force Ripple in the Linear Motor (선형 모터에서 힘리플 제거를 위한 Hybrid 제어기의 설계)

  • Kim, Kyong-Chon;Kim, Jung-Jae;Choi, Young-Man;Gweon, Dae-Gab
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.17-22
    • /
    • 2008
  • The proposed hybrid controller consists of PID controller, feedforward controller and RLSE (Recursive Least Square Estimating) adaptive controller to compensate the force ripple that is periodic function of position in a linear motor. The modeling of force ripple is divided into the current-dependent and current-independent components. The current independent components never change as the current into the linear motor changes. On the other hand, the current-dependent components change as current varies when the velocity and load of the linear motor change. The proposed controller can compensate both force ripples. The feedforward controller compensates the current-independent components and the RLSE adaptive controller compensates the current-dependents components. We verified the performance of the controller by simulation and experiments.

  • PDF

Numerical analysis of the electromagnetic force for design optimization of a rectangular direct current electromagnetic pump

  • Lee, Geun Hyeong;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.869-876
    • /
    • 2018
  • The force of a direct current (DC) electromagnetic pump used to transport liquid lithium was analyzed to optimize its geometrical and electrical parameters by numerical simulation. In a heavy-ion accelerator, which is being developed in Korea, a liquid lithium film is utilized for its high charge-stripping efficiency for heavy ions of uranium. A DC electromagnetic pump with a flow rate of $6cm^3/s$ and a developed pressure of 1.5 MPa at a temperature of $200^{\circ}C$ was required to circulate the liquid lithium to form liquid lithium films. The current and magnetic flux densities in the flow gap, where a $Sm_2Co_{17}$ permanent magnet was used to generate a magnetic field, were analyzed for the electromagnetic force distribution generated in the pump. The pressure developed by the Lorentz force on the electromagnetic force was calculated by considering the electromotive force and hydraulic pressure drop in the narrow flow channel. The opposite force at the end part due to the magnetic flux density in the opposite direction depended on the pump geometrical parameters such as the pump duct length and width that defines the rectangular channels in the nonhomogeneous distributions of the current and magnetic fields.

Current trends in force/torque sensing

  • Morris, Keith-A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.606-608
    • /
    • 1989
  • Force/torque sensors are now providing widespread practical solutions to manufacturing problems, particularly in the area of automated assembly. The current state of the industry is discussed, including the evolution of transducer and controller design, and the trend of robot manufacturers to integrate force/torque sensors into their robot systems thereby greatly improving cycle time and simplifying the application development task for the end-user. Current and future application areas are discussed as well as the benefits of force/torque sensing.

  • PDF

MAGNETIC FLUX-CURRENT SURFACES OF MAGNETOHYDROSTATIC EQUILIBRIA

  • Choe, G.S.;Jang, Minhwan
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.6
    • /
    • pp.261-268
    • /
    • 2013
  • Magnetohydrostatic equilibria, in which the Lorentz force, the plasma pressure force and the gravitational force balance out to zero, are widely adopted as the zeroth order states of many astrophysical plasma structures. A magnetic flux-current surface is a surface, in which both magnetic field lines and current lines lie. We for the first time derive the necessary and sufficient condition for existence of magnetic flux-current surfaces in magnetohydrostatic equilibria. It is also shown that the existence of flux-current surfaces is a necessary (but not sufficient) condition for the ratio of gravity-aligned components of current density and magnetic field to be constant along each field line. However, its necessary and sufficient condition is found to be very restrictive. This finding gives a significant constraint in modeling solar coronal magnetic fields as force-free fields using photospheric magnetic field observations.

Investigation on the Characteristics of the Stationary Feed Motor Current (절삭력 간접측정을 위한 정계모터 전류의 특성 연구)

  • Jeong, Young-Hun;Kim, Seong-Jin;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.66-73
    • /
    • 2002
  • Since cross-feed directional cutting force which is normal to machined surface directly influences the machined surface of the workpiece and total force loaded in cutter, it is necessary to estimate this force to control the roughness of the machined surface and total force in cutter. However, there have been difficulties in using the current existing in a stationary motor for cutting state prediction because of some unpredictable behavior of the current. Empirical approach was conducted to resolve the problem. As a result, we showed that the current and its unpredictable behavior are related to the infinitesimal rotation of the motor. Subsequently, the relationship between the current and the cutting force was identified with the error less than 50%. And, the estimation results of the two machine tools with different characteristics were compared to each other to confirm the validity of the presented estimation method and the characteristics of current of the stationary feed motor.