• Title/Summary/Keyword: Current fed

Search Result 791, Processing Time 0.027 seconds

Enhanced Voltage Gain Single-Phase Current-Fed qZ-Source Inverter (전압 이득이 향상된 단상 전류형 qZ-소스 인버터)

  • Shin, Hyun-Hak;Cha, Hon-Nyong;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.305-311
    • /
    • 2013
  • This paper proposes a performance improvement of existing single-phase current-fed qZ-Source inverter. Voltage gain of the traditional voltage-fed full-bridge inverter and single-phase current-fed qZ-source inverter is only equal to or smaller than input voltage. The proposed inverter can obtain twice higher voltage gain than the single-phase current-fed qZ-Source inverter by adding an extra switch and a capacitor in the circuit. In addition, the proposed inverter shares the common ground between dc input and ac output voltage. Therefore, the proposed inverter can eliminate the possible ground leakage current problem when it is used for grid-tied photovoltaic inverter system. A 120 W prototype inverter is built and tested to verify performances of the proposed inverter.

Analysis of Current-Fed Active AC Power Filters (전류형 능동 교류 전력 필터의 해석)

  • Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.6
    • /
    • pp.441-450
    • /
    • 1989
  • A control technique for current-fed filters is proposed which not only eliminates the harmonic current, but also controls the reactive power at the ac sides of PWM inverter-induction motor drive system. Injecting the proposed PWM current enables the harmonic components of orders not greater than the number of pulses per half-cycle to be removed completely. Also it enables the input fundamental power factor to become unity and hence total input power factor can be improved greatly. Digital simulation is performed to investigate the theoretical output characteristics of the current-fed filters by the proposed control technique.

  • PDF

HE Link Current-Fed Inverter for Fuel Cell Applications (연료전지 응용을 위한 HF Link 전류원 인버터)

  • Chung Se-Kyo;Shin Hwi-Beom;Lee Hyun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.17-20
    • /
    • 2003
  • This paper presents a high frequency (HF) link current-fed inverter fur fuel cell applications. The circuit topology, operation and control method of the proposed HF link current-fed inverter are presented. The active cancellation technique of the 120Hz input harmonic current is also considered. The simulation results are provided to show the feasibility of the proposed inverter scheme.

  • PDF

Design of 5'' True Color FED Driving System (5'' True Color FED 구동시스템 설계)

  • Shin, Hong-Jae;Kwon, Oh-Kyong;Kwack, Kae-Dal
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.5
    • /
    • pp.70-78
    • /
    • 2001
  • We have developed a novel driving system of 5' true color FED using voltage controlled PWM method which has current control effect. The proposed method has the advantage of voltage controlled pulse width modulation method and current control method. Also, we propose a new circuit model of FED subpixel for circuit simulation of FED driving circuits, considering some parasitic effects, i.e., cross talk, line coupling effect and leakage current to the adjacent cathode lines. Output stage of the data driving circuit is optimized using the proposed circuit model. In video data processing, FED controller uses the parallel processing of R.G.B input data, so duty ratio is maximized and brightness of FED increases. With this results, no noise and high quality performance is achieved in display of 5' true color FED.

  • PDF

Passive Power Factor Correction Circuits for Electronic Ballasts using Voltage-Fed and Current-Fed Resonant Inverters (전압원 및 전류원 구동 공진형 인버터로 구성된 형광등용 전자식 안정기의 역률개선에 적합한 수동 역률 개선 회로에 관한 연구)

  • Chae, Gyun;Ryu, Tae-Ha;Cho, Gyu-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.266-269
    • /
    • 1999
  • Several power factor correction(PFC) circuits are presented to achieve high PF electronic ballast for both voltage-fed and current-fed electronic ballast. The proposed PFC circuits use valley-fill(VF) type DC-link stages modified from the conventional VF circuit to adopt the charge pumping method for PFC operations during the valley intervals. In voltage-fed ballast, charge pump capacitors are connected with the resonant capacitors. In current-fed type, the charge pump capacitors are connected with the additional secondary-side of the power transformer. The measured PF and THD are higher than 0.99 and 15% for all proposed PFC circuits. The lamp current CF is also acceptable in the proposed circuits. The proposed circuit is suitable for implementing cost-effective electronic ballast.

  • PDF

Analysis and Design of a Current-fed Two Inductor Bi-directional DC/DC Converter using Resonance for a Wide Voltage Range

  • Noh, Yong-Su;Kim, Bum-Jun;Choi, Sung-Chon;Kim, Do-Yun;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1634-1644
    • /
    • 2016
  • In this paper, a current-fed two-inductor bi-directional DC/DC converter using resonance (CF-TIBCR) and its design method are proposed. The CF-TIBCR has characteristics of low current ripple and a high current rating because of two separated inductors. Also, it achieves zero voltage switching for all switches and zero current switching for switches of a low voltage stage by using the resonant tank. Besides, a voltage spike problem in conventional current-fed converters is solved without the need for an additional snubber or clamping circuits. As a result, the CF-TIBCR features high step-up and high efficiency. Since the proposed converter has difficulty achieving the soft-switching condition when the converter requires the low voltage transfer ratio, a method that varies the number of resonant cycles is adopted to extend the output voltage range with satisfying the soft-switching condition. The principles of the operation characteristics are presented with a theoretical analysis, and the proposed converter is verified through results of an experiment using a laboratory prototype.

SINGLE-PHASE CURRENT SOURCE INVERTER WITH PULSE AREA MODULATION SCHEME FOR SOLAR POWER CONDITIONER

  • Hirachi, K.;Matsumoto, K.;Ishitobi, M.;Ishibashi, M.;Nakaoka, M.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.724-729
    • /
    • 1998
  • In general, a single-phase current-fed PWM inverter using IGBTs has some unique advantages for small scale distributed utility-interactive power supply system as compared with voltage-fed PWM inverter. In particular, this is more suitable and acceptable for a non-isolated type utility-interactive power conditioner, which is going to be widely used for residential solar photovoltaic (PV) power generation system in Japan. However, this current-fed PWM inverter has a significant disadvantage. The output current of this inverter includes large harmonic contents when the inductance of smoothing reactor in its DC side is not large enough to eliminate its current ripple components of this inverter. In order to overcome this problem, a new conceptual pulse area modulation scheme for this inverter is introduced in difference with conventional PWM strategy. This paper presents a new effective control implementation of this PV power conditioner which is able to reduce the harmonic component in the output current produced by the single-phase current-fed PWM inverter even when the ripple current in the smoothing DC reactor is relatively large. The operating principle of the proposed control strategy introdued for this inverter system is described, and its simulation results are evaluated and discussed herein.

  • PDF

New LED Current Balancing Scheme Using C-Fed Z-Source Converter (전류형 Z-Source 컨버터를 이용한 새로운 LED 전류 밸런싱 기법)

  • Hong, Daheon;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.9-15
    • /
    • 2021
  • In multi-string light-emitting diode (LED) driver system, current balancing is crucial because the brightness of LED is directly related to its forward current. This paper presents a novel LED current balancing topology using current-fed Z-source converter. With the proposed structure, currents flowing through two LED strings are automatically balanced owing to the charge-balance condition on capacitors. Operation of the proposed converter is simple and the proposed converter uses only one active switch and one diode. Moreover, low-side gate driving can be used to operate the active switch. To verify the operation of the proposed LED current balancing converter, a prototype is built and tested with different numbers of LEDs.

An Improved Topology for the Current Fed Parallel Resonant Half Bridge Circuits Used in Fluorescent Lamp Electronic Ballasts

  • Wang, Qingsong;Cheng, Ming;Zhang, Bing
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.567-575
    • /
    • 2015
  • An improvement in the current fed parallel resonant half bridge (CFPRHB) circuits used in fluorescent lamp electronic ballasts is provided in this paper. The CFPRHB belongs to the self-oscillating family which includes the current fed push-pull and series resonant inverters, most of which are used in instant-start applications. However, many failure modes are related to the bypass capacitor according to an analysis of failed samples. In this paper, the operating functions of the existing topology in the steady state are analyzed and the main root cause of failure modes has been found. Comparisons between the two topologies are conducted in terms of the voltage stress of the bypass capacitor as well as the thermal and performance of the ballasts to verify the advantages of the proposed topology. It is found that the improved topology is capable of enhancing the reliability and reducing the cost of products without having a negative influence on the system performance.

Characteristics of Fault Current Division Factor & Groud Potential Rise of a Substation fed exclusively by Power Cables (지중케이블 변전소의 고장전류 분류율과 접지전위상승 특성)

  • Choi, Jong-Kee;Jung, Gil-Jo;Kim, Seon-Gu
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.295-297
    • /
    • 1998
  • This paper shows characteristics of fault current division factor $S_f$, which is a ratio of earth- return current to total fault current, at a substation fed exclusively by power cables under unsymmetrical fault condition, such as single line-to-ground fault. In substation grounding system design, $S_f$ is a very important factor determining GPR, touch and step voltage at a substation under fault condition. In case of substations fed by overhead lines, 40-60% of $S_f$ has been typically used, although it is a very conservative value with no other network conditions considered. It is authors' hope that $S_f$ presented in this paper could hopefully be a basic reference in designing of substation grounding system, especially for a substation fed exclusively by power cables.

  • PDF