• Title/Summary/Keyword: Current derivative

Search Result 175, Processing Time 0.027 seconds

Study on the Removal of Fluorescent Whitening Agent by Pretreatment Ozone Oxidation for MBR Process Application (MBR 공정 적용을 위한 전처리 오존산화에 의한 형광증백제 제거 연구)

  • Choi, Jang-Seung;Ryu, Seung-Han;Shin, Dong-Hun;Lee, Jae-Hun;Lee, Soo-Chol;Kim, Sung-Gi;Ryu, Jae-Young;Shin, Won-Sik;Lee, Seul-Ki;Park, Min-Soo
    • Textile Coloration and Finishing
    • /
    • v.29 no.1
    • /
    • pp.11-17
    • /
    • 2017
  • In this study, ozone oxidation experiment was carried out for the removal of fluorescent whitening agent which is widely used in textile dyeing and paper industry. The stilbene fluorescent whitening agent has been industrialized since the earliest, and the amount of current production is the highest. Due to the characteristics of the fluorescent whitening agent that can not be removed by conventional wastewater treatment methods, the fluorescent whitening agent in wastewater treatment has difficulty in using as recycled water in the process. Pre-treatment ozone oxidation experiment was conducted prior to the introduction of Membrane Bio Reactor(MBR) treatment process by converting biodegradable materials into biodegradable materials. The removal efficiencies of fluorescent whitening agents, a diaminostilbenedisulfonic acid derivative by ozone oxidation were evaluated by $UV_{254}$ Scan, $COD_{Mn}$, T-N and color using a synthetic wastewater sample ($COD_{Mn}=433.0mg/{\ell}$) and paper and paper mill wastewater ($COD_{Mn}=157.2mg/{\ell}$).

Developments and Trends in Fisheries Processing: Value-Added Product Development and Total Resource Utilization

  • Meyers Samuel P.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.839-846
    • /
    • 1994
  • Changing concepts in fishery science increasingly are recognizing depletion of traditional stocks, utilization of alternate(non-traditional) species, demand for high quality products, and a total resource utilization approach. Innovative practices are occurring in fisheries processing wherein solid and liquid discharges are no longer treated as 'waste,' but rather as valuable feedstocks for recovery of a variety of value-added ('value enhanced') by-products. Among these are protein hydrolysates, soluble proteins and amino acids, proteolytic enzymes, flavor and flavor extracts, pigments, and biopolymers such as chitosan. Properties and applications of this deacetylated derivative of chitin are noted. Crustacean processing by-products are discussed in terms of their serving as materials for generation of natural flavors and flavor extracts, and products such as fish sauces using contemporary enzymatic techniques. Various food and feed applications of fisheries processing by-products are illustrated with increased usage seen in formulated diets for an expanding aquaculture market. Examples are given of aquaculture becoming increasingly significant in global fisheries resource projections. Critical issues in the international seafood industry Include those of seafood quality, processing quality assurance (HACCP), and recognition of the nutritional and health-related properties of fisheries products. A variety of current seafood processing research is discussed, including that of alternate fish species for surimi manufacture and formulation of value-added seafood products from crawfish and blue crab processing operations. Increasing emphasis is being placed on international aspects of global fisheries and the role of aquaculture in such considerations. Coupled with the need for the aquatic food industry to develop innovative seafood products for the 21st century is that of total resource utilization. Contemporary approaches in seafood processing recognize the need to discard the traditional concept of processing 'waste' and adapt a more realistic, and economically sound, approach of usable by-products for food and feed application. For example, in a period of declining natural fishery resources it is no longer feasible to discard fish frames following fillet removal when a significant amount of residual valuable flesh is present that can be readily recovered and properly utilized in a variety of mince-based formulated seafood products.

  • PDF

Biotransformation of Free Isoflavones by Bacillus Species Isolated from Traditional Cheonggukjang

  • Lim, Ji-Sun;Jang, Chan-Ho;Lee, In-Ae;Kim, Hyo-Jung;Lee, Choong-Hwan;Kim, Jeong-Hwan;Park, Chun-Seok;Kwon, Dae-Young;Lim, Jin-Kyu;Hwang, Young-Hyun;Kim, Jong-Sang
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.1046-1050
    • /
    • 2009
  • Our previous study showed that isoflavone profile of soybean undergoes a significant change during cheonggukjang preparation. In particular, the content of metabolite(s) with similar retention time to glycitein under the high performance liquid chromatography (HPLC) condition was significantly increased while the levels of genistein and its derivatives were notably lowered. Therefore, we hypothesized that genistein and its derivatives might be converted to genistein glucosides with similar elution time to glycitein. Our current data suggest that genistein and its derivatives are extensively metabolized into various compounds including genistein glycosides, but not glycitein or its derivatives, by Bacillus species isolated from traditional cheonggukjang. Some of daidzein was also converted into a derivative with shorter retention time by Bacillus amyloliquefaciens 51 and 86-1 but not by Bacillus subtilis 3-5 and 3-17. As metabolism of soy isoflavones, major health-promoting components in soy products, is widely variable depending upon Bacillus species, it is essential to select microorganism that minimizes the breakdown or modification of soy isoflavones in the process of fermented soy product manufacture.

Analysis of the Characteristics of a White OLED using the Newly Synthesized Blue Emitting Material nitro-DPVT by Varying the Doping Concentrations of Fluorescent Dye and the Thickness of the NPB Layer (신규 합성한 청색발광재료 nitro-DPVT를 사용한 백색 유기발광다이오드의 형광색소 도핑농도 및 NPB 층의 두께 변화에 따른 특성 분석)

  • Jeon, Hyeon-Sung;Cho, Jae-Young;Oh, Hwan-Sool;Yoon, Seok-Beom
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.379-385
    • /
    • 2006
  • A stacked white organic light-emitting diode (OLED) having a blue/orange emitting layer was fabricated by synthesizing nitro-DPVT, a new derivative of the blue-emitting material DPVBi on the market. The white-emission of the two-wavelength type was successfully obtained by using both nitro-DPVT for blue~emitting material, orange emission as a host material and Rubrene for orange emission as a guest material. The basic structure of the fabricated white OLED is glass/ITO/NPB$(200{\AA})$/nitro-DPVT$(100{\AA})$/nitro-DPVT:$Rubrene(100{\AA})/BCP(70{\AA})/Alq_3(150{\AA})/Al(600{\AA})$. To evaluate the. characteristics of the devices, firstly, we varied the doping concentrations of fluorescent dye Rubrene from 0.5 % to 0.8 % to 1.3 % to 1.5 % to 3.0 % by weight. A nearly pure white-emission was obtained in CIE coordinates of (0.3259, 0.3395) when the doping concentration of Rubrene was 1.3 % at an applied voltage of 18 V. Secondly, we varied the thickness of the NPB layer from $150{\AA}\;to\;200{\AA}\;to\;250{\AA}\;to\;300{\AA}$ by fixing doping with of Rubrene at 1.3 %. A nearly pure white-emission was also obtained in CIE coordinates of (0.3304, 0.3473) when the NPB layer was $250-{\AA}$ thick at an applied voltage of 16 V. The two devices started to operate at 4 V and to emit light at 4.5 V. The external quantum efficiency was above 0.4 % when almost all of the current was injected.

${\alpha}$-Mangostin Reduced ER Stress-mediated Tumor Growth through Autophagy Activation

  • Kim, Sung-Jin;Hong, Eun-Hye;Lee, Bo-Ra;Park, Moon-Ho;Kim, Ji-Won;Pyun, A-Rim;Kim, Yeon-Jeong;Chang, Sun-Young;Chin, Young-Won;Ko, Hyun-Jeong
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.253-260
    • /
    • 2012
  • ${\alpha}$-Mangostin is a xanthon derivative contained in the fruit hull of mangosteen (Garcinia mangostana L.), and the administration of ${\alpha}$-Mangostin inhibited the growth of transplanted colon cancer, Her/CT26 cells which expressed Her-2/neu as tumor antigen. Although ${\alpha}$-Mangostin was reported to have inhibitory activity against sarco/endoplasmic reticulum $Ca^{2+}$ ATPase like thapsigargin, it showed different activity for autophagy regulation. In the current study, we found that ${\alpha}$-Mangostin induced autophagy activation in mouse intestinal epithelial cells, as GFP-LC3 transgenic mice were orally administered with 20 mg/kg of ${\alpha}$-Mangostin daily for three days. However, the activation of autophagy by ${\alpha}$-Mangostin did not significantly increase OVA-specific T cell proliferation. As we assessed ER stress by using XBP-1 reporter system and phosphorylation of $eIF2{\alpha}$, thapsigargin-induced ER stress was significantly reduced by ${\alpha}$-Mangostin. However, coadministration of thapsigargin with ${\alpha}$-Mangostin completely blocked the antitumor activity of ${\alpha}$-Mangostin, suggesting ER stress with autophagy blockade accelerated tumor growth in mouse colon cancer model. Thus the antitumor activity of ${\alpha}$-Mangostin can be ascribable to the autophagy activation rather than ER stress induction.

Analysis of Subthreshold Swing for Double Gate MOSFET Using Gaussian Function (가우스함수를 이용한 DGMOSFET의 문턱전압이하 스윙분석)

  • Jung, Hak-Kee;Han, Ji-Hyung;Lee, Jae-Hyung;Jeong, Dong-Soo;Lee, Jong-In;Kwon, Oh-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.681-684
    • /
    • 2011
  • In this paper, the relationship of potential and charge distribution in channel for double gate(DG) MOSFET has been derived from Poisson's equation using Gaussian function. The subthreshold swing has been investigated according to projected range and standard projected deviation, variables of Gaussian function. The analytical potential distribution model has been derived from Poisson's equation, and subthreshold swing has been obtained from this model. The subthreshold swing has been defined as the derivative of gate voltage to drain current and is theoretically minimum of 60mS/dec, and very important factor in digital application. Those results of this potential model are compared with those of numerical simulation to verify this model. As a result, since potential model presented in this paper is good agreement with numerical model, the subthreshold swings have been analyzed according to the shape of Gaussian function.

  • PDF

Braking performance of working rail-mounted cranes under wind load

  • Jin, Hui;Chen, Da
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Rail-mounted cranes can be easily damaged by a sudden gust of wind while working at a running speed, due to the large mass and high barycenter positions. In current designs, working rail-mounted cranes mainly depend on wheel braking torques to resist large wind load. Regular brakes, however, cannot satisfactorily stop the crane, which induces safety issues of cranes and hence leads to frequent crane accidents, especially in sudden gusts of wind. Therefore, it is necessary and important to study the braking performance of working rail mounted cranes under wind load. In this study, a simplified mechanical model was built to simulate the working rail mounted gantry crane, and dynamic analysis of the model was carried out to deduce braking performance equations that reflect the qualitative relations among braking time, braking distance, wind load, and braking torque. It was shown that, under constant braking torque, there existed inflection points on the curves of braking time and distance versus windforce. Both the braking time and the distance increased sharply when wind load exceeded the inflection point value, referred to as the threshold windforce. The braking performance of a 300 ton shipbuilding gantry crane was modeled and analyzed using multibody dynamics software ADAMS. The simulation results were fitted by quadratic curves to show the changes of braking time and distance versus windforce under various mount of braking torques. The threshold windforce could be obtained theoretically by taking derivative of fitted curves. Based on the fitted functional relationship between threshold windforce and braking torque, theoretical basis are provided to ensure a safe and rational design for crane wind-resistant braking systems.

Tas13D Inhibits Growth of SMMC-7721 Cell via Suppression VEGF and EGF Expression

  • He, Huai-Zhen;Wang, Nan;Zhang, Jie;Zheng, Lei;Zhang, Yan-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2009-2014
    • /
    • 2012
  • Objective: Taspine, isolated from Radix et Rhizoma Leonticis has demosntrated potential proctiective effects against cancer. Tas13D, a novel taspine derivative synthetized by structure-based drug design, have been shown to possess interesting biological and pharmacological activities. The current study was designed to evaluate its antiproliferative activity and underlying mechanisms. Methods: Antiproliferative activity of tas13D was evaluated by xenograft in athymic mice in vivo, and by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and cell migration assays with human liver cancer (SMMC-7721) cell lines in vitro. Docking between tas13D and VEGFR and EGFR was studied by with a Sybyl/Surflex module. VEGF and EGF and their receptor expression was determined by ELISA and real-time PCR methods, respectively. Results: Our present study showed that tas13D inhibited SMMC-7721 xenograft tumor growth, bound tightly with the active site of kinase domains of EGFR and VEGFR, and reduced SMMC-7721 cell proliferation (IC=34.7 ${\mu}mol/L$) and migration compared to negative controls. VEGF and EGF mRNAs were significantly reduced by tas13D treatment in a dose-dependent manner, along with VEGF and EGF production. Conclusion: The obtained results suggest that tas13D inhibits tumor growth and cell proliferation by inhibiting cell migration, downregulating mRNA expression of VEGF and EGF, and decreasing angiogenic factor production. Tas13D deserves further consideration as a chemotherapeutic agent.

Solution Processed Hexaazatrinaphthylene derivatives as a efficient hole injection layer for phosphorescent organic light-emitting diodes (신규 용액공정 정공주입층 소재 Hexaazatrinaphthylene 유도체를 도입한 인광 유기전기발광소자)

  • Lee, Jangwon;Sung, Baeksang;Lee, Seung-Hoon;Yoo, Jae-Min;Lee, Jae-Hyun;Lee, Jonghee
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.706-712
    • /
    • 2020
  • To improve light-emitting performance of green phosphorescent organic light-emitting diodes (OLEDs), we introduced new hole injection materials-hexaazatrinaphthylene (HATNA) derivatives as a solution processed hole injection layer (HIL). The HATNA derivative has a low the lowest unoccupied molecular orbital (LUMO) energy level, similar to the work function of Indium Tin Oxide (ITO), showing a different concept of hole injection mechanism. It was confirmed that the device efficiency of OLEDs using HATNA-HIL showed the improved external quantum efficiency from 10.8% to 15.6% and current efficiency from 32.7 cd/A to 42.7 cd/A due to the balance of electrons and holes in the emissive layer.

Tensile Properties and Thermal Stability of Cellulose Nanofibril/Clay Nanocomposites

  • Park, Byung-Dae;Singh, Adya P.;Um, In Chul
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.1
    • /
    • pp.18-24
    • /
    • 2013
  • This work attempted to fabricate organic/inorganic nanocomposite by combining organic cellulose nanofibrils (CNFs), isolated by 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO)-mediated oxidation of native cellulose with inorganic nanoclay. The morphology and dimension of CNFs, and tensile properties and thermal stability of CNF/clay nanocomposites were characterized by transmission electron microscope (TEM), tensile test, and thermogravimetry (TG), respectively. TEM observation showed that CNFs were fibrillated structure with a diameter of about $4.86{\pm}1.341nm$. Tensile strength and modulus of the hybrid nanocomposite decreased as the clay content of the nanocomposite increased, indicating a poor dispersion of CNFs or inefficient stress transfer between the CNFs and clay. The elongation at break increased at 1% clay level and then continuously decreased as the clay content increased, suggesting increased brittleness. Analysis of TG and derivative thermogravimetry (DTG) curves of the nanocomposites identified two thermal degradation peak temperatures ($T_{p1}$ and $T_{p2}$), which suggested thermal decomposition of the nanocomposites to be a two steps-process. We think that $T_{p1}$ values from $219.6^{\circ}C$ to $235^{\circ}C$ resulted from the sodium carboxylate groups in the CNFs, and that $T_{p2}$ values from $267^{\circ}C$ to $273.5^{\circ}C$ were mainly responsible for the thermal decomposition of crystalline cellulose in the nanocomposite. An increase in the clay level of the CNF/clay nanocomposite predominately affected $T_{p2}$ values, which continuously increased as the clay content increased. These results indicate that the addition of clay improved thermal stability of the CNF/clay nanocomposite but at the expense of nanocomposite's tensile properties.

  • PDF