• 제목/요약/키워드: Current density

검색결과 5,640건 처리시간 0.042초

Assessment of kinetics behavior of electrocoagulation process for the removal of suspended solids and metals from synthetic water

  • Singh, Hariraj;Mishra, Brijesh Kumar
    • Environmental Engineering Research
    • /
    • 제22권2호
    • /
    • pp.141-148
    • /
    • 2017
  • Globalization, industrialization, mining, and uncontrolled population growth have fostered a shortage of potable water. Therefore, it has become imperative to understand an effective and reasonable water purification technique. A renewed interest in electrocoagulation (EC) has been spurred by the search for reliable, cost-effective, water-treatment processes. This paper has elucidated a technical approach for getting rid of heavy metals and total suspended solids (TSS) from synthetic water using an aluminum electrode. The effect of operational parameters, such as current density, inter-electrode distance, operating time, and pH, were studied and evaluated for maximum efficiency. This study corroborates the correlation between current density and removal efficiency. Neutral pH and a low electrode gap have been found to aid the efficacy of the EC setup. The outcome indicates that a maximum TSS removal efficiency of 76.6% occurred at a current density of $5.3mA/cm^2$ during a contact time of 30 min. In the case of heavy metals remediation, 40 min of process time exhibited extremely reduced rates of 99%, 59.2%, and 82.1%, for Cu, Cr, and Zn, respectively. Moreover, kinetic study has also demonstrated that pollutants removal follows first-and second-order model with current density and EC time being dependent.

전류밀도와 전해액의 인산농도가 Ti 양극 산화 피막에 미치는 영향 (Effects of Current Density and Phosphoric Acid Concentration on Anodic Oxide Film of Titanium)

  • 김계성;정원섭;신헌철;최영선;조영래
    • 대한금속재료학회지
    • /
    • 제46권6호
    • /
    • pp.370-376
    • /
    • 2008
  • The formation of anodic oxide film of titanium (Ti) was studied at a variety of electrolyte concentrations and current density to clarify their effects on morphology, microstructure and composition of Ti oxide layer. For the analysis of the Ti oxide films, a scanning electron microscopy (SEM), X-ray diffractometer (XRD), and X-ray photoelectron spectroscopy (XPS) were used. The results showed that the concentration of phosphoric acid played a crucial role in the crystalline structure of the Ti oxide layer while the current density gave a critical effect on the thickness and diameter of its pore. In particular, the crystalline anatase phase with a thickness larger than $2{\mu}m$, which is quite desirable for a dental implant application, could be readily prepared at the phosphoric acid concentration of 0.5 M and current density higher than $2.0A/dm^2$.

3D NAND Flash Memory에 Ferroelectric Material을 사용한 Current Path 개선 (Improvement of Current Path by Using Ferroelectric Material in 3D NAND Flash Memory)

  • 이지환;이재우;강명곤
    • 전기전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.399-404
    • /
    • 2023
  • 본 논문에서는 3D NAND Flash memory의 O/N/O(Oxide/Nitride/Oxide) 구조와 blocking oxide를 ferroelectric material로 대체한 O/N/F(Oxide/Nitride/Ferroelectric) 구조의 current path를 분석했다. O/N/O 구조는 Vread가 인가되면 neighboring cell의 E-field로 인해 current path가 channel 후면에 형성된다. 반면 O/N/F 구조는 ferroelectric material의 polarization으로 인해 electron이 channel 전면으로 이동하여 current path가 전면에 형성된다. 또한 channel thickness와 channel length에 따른 소자 특성을 분석했다. 분석 결과 O/N/F 구조의 전면 electron current density 증가는 O/N/O 구조보다 2.8배 더 높았고 O/N/F 구조의 전면 electron current density 비율이 17.7% 높았다. 따라서 O/N/O 구조보다 O/N/F 구조에서 전면 current path가 더 효과적으로 형성된다.

전류밀도와 전해질의 pH가 음이온교환막의 막 오염에 미치는 영향 (Effect of Current Density and pH of Electrolyte on Anion-Exchange Membrane Fouling)

  • 최재환
    • 대한환경공학회지
    • /
    • 제27권9호
    • /
    • pp.965-969
    • /
    • 2005
  • 이온교환막 공정의 중요한 운전인자인 전류밀도와 전해질의 pH가 막 오염에 미치는 영향을 연구하였다. 휴믹산 100 mg/L를 포함하고 있는 NaCl 용액에서 Neosepta AMX (Tokuyama Soda, Japan) 음이온교환막의 막 오염 현상을 관찰하였다. 한계전류밀도(LCD) 전 후 영역의 전류를 공급하면서 이온교환막의 전기저항 변화를 측정하여 막 오염 현상을 분석하였다. 실험결과 LCD 이하에서는 전류밀도의 변화가 막 오염에 큰 영향을 미치지 않았다. 그러나 LCD 이상의 전류밀도에서는 막 오염이 심각하게 진행되는 것으로 나타났다. 실험 후 휴믹산에 오염된 막에 대한 전류전압 곡선에서도 LCD 이상에서 실험한 경우에 막 오염으로 전기저항이 증가하고 LCD가 감소한 것을 알 수 있었다. 또한 휴믹산이 포함된 전해질 용액의 pH를 산성 조건으로 조정한 후 실험한 결과 pH가 감소할수록 막 오염이 증가하는 것으로 나타났다. 이 결과로부터 막 오염이 휴믹산의 표면 전하에 의한 것보다 물리화학적 성질에 더 큰 영향을 받는다는 것을 알 수 있었다.

Affecting of Corrosion Potential and Current Density on Variation Polarization Curves with Polyvinylchloride (I)

  • Choi, Chil-Nam;Yang, Hyo-Kyung;Jung, Oh-Jin
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제2권2호
    • /
    • pp.91-98
    • /
    • 1998
  • In this study, we carried out the experiments for measuring the variations of corrosion potential and current density for polarization curves with polyvinylchloride. The results exhibited especially the influence affecting the corrosion potential and various conditions (temperature, day, pH, bacteria, and added salt). The second anodic current density peak and the minimum passive current density are designated $I_P/I_0,$ respectively. The value of $I_P/I_O$ is used as a measurement for the extent of degradation of the polyvinylchloride. The potentiodpnamics parameters of the corrosion were obtained using Tafel equation.

  • PDF

Effects of Electroplating Current Density and Duty Cycle on Nanocrystal Size and Film Hardness

  • Sun, Yong-Bin
    • 반도체디스플레이기술학회지
    • /
    • 제14권1호
    • /
    • pp.67-71
    • /
    • 2015
  • Pulse electroplating was studied to form nanocrystal structure effectively by changing plating current density and duty cycle. When both of plating current density and duty cycle were decreased from $100mA/cm^2$ and 70% to $50mA/cm^2$ and 30%, the P content in the Ni matrix was increased almost up to the composition of $Ni_3P$ compound and the grain growth after annealing was retarded as well. The as-plated hardness values ranging from 660 to 753 HV are mainly based on the formation of nanocrystal structure. On the other hand, the post-anneal hardness values ranging from 898 to 1045 HV, which are comparable to the hardness of hard Cr, are coming from how competition worked between the precipitation of $Ni_3P$ and the grain coarsening. According to the ANOVA and regression analysis, the plating current density showed more strong effect on nanocrystal size and film hardness than the duty cycle.

Performance Analysis of SOFC/MGT Hybrid System

  • Kim, Jae-Hwan;Suzuki, Kenjiro
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.703-707
    • /
    • 2001
  • A performance analysis of a SOFC/MGT hybrid system has been carried out for concept design. Thermo-dynamic models for each component being able to describe electrochemical characteristics and heat and mate-rial balance are proposed. Estimated is the power capacity of a SOFC suitable for the hybrid operation with a 5kW class MGT. Effects of current density and operating pressure are also investigated. Electric efficiency showed weak dependence on operating pressure and current density. It is desirable that the SOFC operates at high current density in manufacturing cost's point of view though operating with high current density slightly decreases the electric efficiency find specific power.

  • PDF

고온 초전도 케이블용 Bi-2223 선재의 기계적 특성 (Mechanical Characteristics of Bi-2223 Wire for High-Tc Superconducting Cable)

  • 백승명;김영석;정순용;김상현
    • 한국전기전자재료학회논문지
    • /
    • 제11권11호
    • /
    • pp.1028-1034
    • /
    • 1998
  • Bi-2223 superconductor is known as one of the candidates for practical superconducting wires. Ag-sheathed Bi-2223 superconducting wires were fabricated using the powder-in-tube(PIT) method. When the 19-filaments wire was immersed in liquid nitrogen(77K), maximum critical current density Jc of 62 A/$mm_2$ at 0T was achieved. The critical current density has been shown to depend on the mechanical properties such as tensile stress and bending strain in Ag-sheathed Bi-2223 superconducting wires. The tensile strain for Jc degradation onset was in the range of 0.12~0.3%. In the case of 19-filaments wire, the bending strain is estimated to be smaller than 0.3% for the reasonable Jc value. The observed degradation of the critical current density due to strain effect is inevitable and can be attributed to the formation of microcracks within the superconducting core.

  • PDF

Structural and Optical Properties of Porous Silicon Prepared by Electrochemical Etching

  • Lee, Jeong-Seok;Cho, Nam-Hee
    • 한국세라믹학회지
    • /
    • 제39권2호
    • /
    • pp.109-112
    • /
    • 2002
  • The structural and optical features of Porous Silicon(PS) were investigated; the porous silicon was prepared by electrochemical etching of silicon wafers in HF solution. The morphologies and Photoluminescece(PL) features of the PS were investigated in terms of etching time, current density and aging conditions. The average pore diameter and pore depth were determined by current density and etching time, respectively. As-prepared PS exhibited the maximum PL peak at the wavelength of ∼ 450 nm. The degree of deviation from as-prepared PS during aging treatment seemed to depend on the microstructure as well as morphology of the PS. It is found that etching current density played an important role on the microstructural features of the PS.

Corrosion Characteristics with Polarization Curve of Polymers

  • Park, Chil-Nam;Jung, Oh-Jin
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제10권S_4호
    • /
    • pp.181-187
    • /
    • 2001
  • This study was carried out to measure the variations of potential and current density with polymers. The results were particularly examined to identify the influences on potential and rate of various factors including temperature and pH. The Tafel slope for anodic dissolution was determined by the polarization effect depending on these conditions. The optimum conditions were established for each case. The second anodic current density peak and maximum current density were designated as the relative polarization sensitivity$(I_r/I_f)$. The mass transfer coefficient value$(\alpha)$ was determined with the Tafel slope for anodic dissolution based on the polarization effect with optimum conditions.

  • PDF