Effects of Current Density and Phosphoric Acid Concentration on Anodic Oxide Film of Titanium

전류밀도와 전해액의 인산농도가 Ti 양극 산화 피막에 미치는 영향

  • Kim, Kye-Sung (School of Materials Science and Engineering, Pusan National University) ;
  • Chung, Won-Sub (School of Materials Science and Engineering, Pusan National University) ;
  • Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University) ;
  • Choe, Young-Son (Department of Chemical Engineering, Pusan National University) ;
  • Cho, Young-Rae (School of Materials Science and Engineering, Pusan National University)
  • 김계성 (부산대학교 재료공학부) ;
  • 정원섭 (부산대학교 재료공학부) ;
  • 신헌철 (부산대학교 재료공학부) ;
  • 최영선 (부산대학교 응용화학공학과) ;
  • 조영래 (부산대학교 재료공학부)
  • Received : 2008.03.24
  • Published : 2008.06.22

Abstract

The formation of anodic oxide film of titanium (Ti) was studied at a variety of electrolyte concentrations and current density to clarify their effects on morphology, microstructure and composition of Ti oxide layer. For the analysis of the Ti oxide films, a scanning electron microscopy (SEM), X-ray diffractometer (XRD), and X-ray photoelectron spectroscopy (XPS) were used. The results showed that the concentration of phosphoric acid played a crucial role in the crystalline structure of the Ti oxide layer while the current density gave a critical effect on the thickness and diameter of its pore. In particular, the crystalline anatase phase with a thickness larger than $2{\mu}m$, which is quite desirable for a dental implant application, could be readily prepared at the phosphoric acid concentration of 0.5 M and current density higher than $2.0A/dm^2$.

Keywords

Acknowledgement

Supported by : 부산대학교

References

  1. T. Y. Kim, W. W. Son, T. Y. Kwon, I. K. Kang, and K. H. Kim, J. Korean. Res. Soc. Dent. Mater. 29, 253 (2002)
  2. I. S. Park, T. G. Woo, M. H. Lee, S. G. Ahn, M. S. Park, T. S. Bae, and K. W. Seol, Met. Mater. Int. 12, 505 (2006) https://doi.org/10.1007/BF03027751
  3. B. H. Lee, J. K. Kim, Y. D. Kim, K. Choi, and K. H. Lee, J. Biomed. Mater. Res. 69A, 279 (2004) https://doi.org/10.1002/jbm.a.20126
  4. S. Kim, H. S. Ryu, H. S. Jung, and C. H. Chung, Met. Mater. Int. 10, 171 (2004) https://doi.org/10.1007/BF03027322
  5. D. Buster, Schenk, S. Steinemann, J. P. Fiorellini, C. H. Fox, and H. Stich, J. Biomed. Mater. Res. 25, 889 (1991) https://doi.org/10.1002/jbm.820250708
  6. W. Q. Yan, T. Nakamura, and M. Kobayashi, J. Biomed Mater. Res. 37, 267 (1997) https://doi.org/10.1002/(SICI)1097-4636(199711)37:2<267::AID-JBM17>3.0.CO;2-B
  7. J. E. Lee, K. S. Kim, Y. R. Cho, K. H. Kim, and W. S. Chung, Solid State Phenom. 124-126, 1777 ( 2007) https://doi.org/10.4028/www.scientific.net/SSP.124-126.1777
  8. W. W. Son, K. H. Kim, H. I. Kim, T. Hanawa, and Y. S. Jeong, Biomater. Res. 4, 66 (2000)
  9. M. H. Lee, Y. H. Chu, T. S. Bae, and Y. C. Jin, J. KOSOMBE. 14, 4 (1993)
  10. Y. T. Sul, C. B. Johnsson, S. Petronis, A. Krozer, Y. Jeong, A. Wennerburg, and T. Albrektsson, Biomaterials. 23, 491 (2002) https://doi.org/10.1016/S0142-9612(01)00131-4
  11. H. Ishizawa and M. Ogino, Biomed. J. Mater. Res. 29, 65 (1995) https://doi.org/10.1002/jbm.820290110
  12. O. S. Kwon, J. S. Yue, H. H. Park, O. Y. Lee, M. H. Lee, and K. H. Song, J. Kor. Inst. Met. Mater. 43, 481 (2005)
  13. Y. J. Park, H. J. Song, and Y. R. Lee, J. Korean. Res. Soc. Dent. Mater. 31, 255 (2004)
  14. U. Diebold. Surf. Sci. Rep. 48, 53 (2003) https://doi.org/10.1016/S0167-5729(02)00100-0
  15. N. K. Kim, J. J. Kim, W. Y. Jeon, I. S. Park, M. H. Lee, and T. S. Bae, J. Korean. Res. Soc. Dent. Mater. 31, 205 (2004)
  16. M. E. Barbour, D. J. Sullivan, and D. C. Jagger, Colloids and Surfaces 307, 116 (2007) https://doi.org/10.1016/j.colsurfa.2007.05.010
  17. Y. T. Sul, C. B. Johansson, Y. Jeong, and T. Albrektsson, Med. Eng. Phys. 23, 329 (2001) https://doi.org/10.1016/S1350-4533(01)00050-9
  18. L. H. Li, Ph. D. Thesis, p. 37-39, Seoul National University, Seoul (2005)