• 제목/요약/키워드: Current conduction

검색결과 918건 처리시간 0.028초

Electrical Conduction Mechanism in ITO/Alq3/Al Organic Light-emitting Diodes

  • Chung, Dong-Hoe;Lee, Joon-Ung
    • Transactions on Electrical and Electronic Materials
    • /
    • 제5권1호
    • /
    • pp.24-28
    • /
    • 2004
  • We have used ITO/Alq$_3$/Al structure to study electrical conduction mechanism in organic light-emitting diodes. Current-voltage-luminance characteristics were measured at room temperature by varying the thickness of Alq$_3$ layer from 60 to 400mm. We were able to confirm that there are three different mechanisms depending on the applied voltage region; ohmic, space-charge-limited current, and trap-charge-limit-current mechanism. And the maximum luminous efficiency was obtained when the thickness of Alq$_3$ layer is 200nm.

Design and Analysis of an Interleaved Boundary Conduction Mode (BCM) Buck PFC Converter

  • Choi, Hangseok
    • Journal of Power Electronics
    • /
    • 제14권4호
    • /
    • pp.641-648
    • /
    • 2014
  • This paper presents the design considerations and analysis for an interleaved boundary conduction mode power factor correction buck converter. A thorough analysis of the harmonic content of the AC line current is presented to examine the allowable voltage gain (K value) for meeting the EN61000-3-2, Class D standard while maximizing efficiency. The results of the harmonic analysis are used to derive the required value of K and therefore the output voltage necessary to meet the class D requirements for a given AC line voltage. The discussed design consideration and harmonic current analysis are verified on a 300W universal line experimental prototype converter with an 80V output. The measured efficiencies remain above 96% down to 20% of the full load. The input current harmonics also meet the IEC61000-3-2 (class D) standard.

온도 변화에 따른 OLED 소자의 전기전도 특성 (Electrical Conduction Properties of OLED Device with Varying Temperature)

  • 이호식;김귀열;박용필
    • 한국정보통신학회논문지
    • /
    • 제11권12호
    • /
    • pp.2361-2365
    • /
    • 2007
  • OLED 소자의 전기적 특성을 온도 변화에 따라 측정을 하였다. OLED 소자는 N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD)를 정공 수송층으로, tris(8-hydroxyquinoline) aluminum(Alq3)를 전자송층 및 발광층으로 사용하였다. 전압-전류 특성은 온도 범위 $10K{\sim}300K$에서 측정하였다. OLED 소자에서의 전도 메커니즘의 해석은 Fowler-Nordheim tunneling 법을 이용하여 해석하였다.

일부 전류분류영역을 가짐으로서 최소 열손실을 갖는 초전도 전류도입선 (Minimum Heat Dissipation of HTS Current Lead Having Partial Current Sharing Region)

  • 설승윤;허광수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.131-136
    • /
    • 2001
  • In this paper, a high-temperature superconductor(HTS) current lead operating in current sharing mode is described. The minimum heat dissipation and the optimum safety factor(cross-sectional area) is obtained analytically for partial current sharing HTS leads. It is assumed that the current lead is in conduction cooled state, and the sheath material is the alloy of silver and gold. The reduced cross-sectional area results partial current sharing state, and consequently reduces conduction heat transfer, but the Joule heat generation is increased. The optimized HTS current lead is different from the conventional copper leads. In the copper leads, the minimum heat dissipation is obtained for the zero gradient of temperature at warm end. However, the temperature gradient at warm end is not zero when the HTS lead operates at minimum dissipation state.

  • PDF

전도냉각 고온초전도 SMES 시스템의 기초절연 특성 (Basic Insulation Characteristics of Conduction-Cooled HTS SMES System)

  • 최재형;곽동순;천현권;김상현
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권8호
    • /
    • pp.404-410
    • /
    • 2006
  • Toward the practical applications, on operation of conduction-cooled HTS SMES at temperatures well below 40[K] should be investigated, in order to take advantage of a greater critical current density of HTS and considerably reduce the size and weight of the system. In order to take advantage of a greater critical current density of high temperature superconducting (HTS) and considerably reduce the size and weight of the system, conduction-cooled HTS superconducting magnetic energy storage (SMES) at temperatures well below 40[K] should be investigated. This work focuses on the breakdown and flashover phenomenology of dielectrics exposed in air and/or vacuum for temperatures ranging from room temperature to cryogenic temperature. Firstly, we summarize the insulation factors of the magnet for the conduction cooled HTS SMES. And Secondly a surface flashover as well as volume breakdown in air and/or vacuum with two kind insulators has been investigated. Finally, we will discuss applications for the HTS SMES including aging studies on model coils exposed in vacuum at cryogenic temperature. The commercial application of many conduction-cooled HTS magnets, however, requires refrigeration at temperatures below 40[K], in order to take advantage of a greater critical current density of HTS and reduce considerably the size and weight of the system. The magnet is driven in vacuum condition. The need to reduce the size and weight of the system has led to the consideration of the vacuum as insulating media. We are studying on the insulation factors of the magnet for HTS SMES. And we experiment the spacer configure effect in the dielectric flashover characteristics. From the results, we confirm that our research established basic information in the insulation design of the magnet.

Analysis on electrical and thermal characteristics of MI-SS racetrack coil under conduction cooling and external magnetic field

  • Chae, Yoon Seok;Kim, Ji Hyung;Quach, Huu Luong;Lee, Sung Hoon;Kim, Ho Min
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권4호
    • /
    • pp.61-69
    • /
    • 2021
  • This paper presents the analysis and experiment results on the electrical and thermal characteristics of metal insulation (MI) REBCO racetrack coil, which was wound with stainless steel (SS) tape between turn-to-turn layers, under rotating magnetic field and conduction cooling system. Although the field windings of superconducting rotating machine are designed to operate on a direct current, they may be subjected to external magnetic field due to the unsynchronized armature windings during electrical or mechanical load fluctuations. The field windings show the voltage and magnetic field fluctuations and the critical current reduction when they are exposed to an external magnetic field. Moreover, the cryogenic cooling conditions are also identified as the factors that affect the electrical and thermal characteristics of the HTS coil because the characteristic resistance changes according to the cryogenic cooling conditions. Therefore, it is necessary to investigate the effect of external magnetic field on the electrical and thermal characteristics of MI-SS racetrack coil for further development reliable HTS field windings of superconducting rotating machine. First, the major components of the experiment test (i.e., HTS racetrack coil construction, armature winding of 75 kW class induction motor, and conduction cooling system) were fabricated and assembled. Then, the MI racetrack coil was performed under liquid nitrogen bath and conduction cooling conditions to estimate the key parameters (i.e., critical current, time constant, and characteristic resistance) for the test coil in the steady state operation. Further, the test coil was charged to the target value under conduction cooling of 35 K then exposed to the rotating magnetic field, which was generated by three phrase armature windings of 75 kW class induction motor, to investigate the electrical and thermal characteristics during the transient state.

LDPE에서 공간전하분포와 측정전류의 시간특성에 대한 수치해석 (Numerical Analysis about the Time Characteristics of Space Charge Distribution and Measured Current in LDPE)

  • 황보승;박대희;남석현;권윤혁;한민구
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권9호
    • /
    • pp.502-509
    • /
    • 2000
  • In this paper in order to evaluat quantitavely the formation mechanism of space charge and its effects on the conduction characteristics in LDPE we have carried out the numerical analysis on the basis of experimental results of space charge distribution cathode field and current with time which had been simultaneously measured at applied field of 50kV/mm and room temperature. As the models for numerical analysis we employ the Richarson-Schottky theory for charge injection from electrode into LDPE and the band-tail conduction at crystalline regions and the hopping conduction by traps which mainly exist at the interface regions of crystalline-amorphous region for charge transport in LDPE. Futhermore in order to investigate the influence of physical parameters on the time characteristcs of space charge distribution and measured current we have changed the values of trap density activation energies for charge injection and transport and have analyzed their effects.

  • PDF

Time-Delay Effects on DC Characteristics of Peak Current Controlled Power LED Drivers

  • Jung, Young-Seok;Kim, Marn-Go
    • Journal of Power Electronics
    • /
    • 제12권5호
    • /
    • pp.715-722
    • /
    • 2012
  • New discrete time domain models for the peak current controlled (PCC) power LED drivers in continuous conduction mode include for the first time the effects of the time delay in the pulse-width-modulator. Realistic amounts of time delay are found to have significant effects on the average output LED current and on the critical inductor value at the boundary between the two conduction modes. Especially, the time delay can provide an accurate LED current for the PCC buck converter with a wide input voltage. The models can also predict the critical inductor value at the mode boundary as functions of the input voltage and the time delay. The overshoot of the peak inductor current due to the time delay results in the increase of the average output current and the reduction of the critical inductor value at the mode boundary in all converters. Experimental results are presented for the PCC buck LED driver with constant-frequency controller.

Design of a TRIAC Dimmable LED Driver Chip with a Wide Tuning Range and Two-Stage Uniform Dimming

  • Chang, Changyuan;Li, Zhen;Li, Yuanye;Hong, Chao
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.640-650
    • /
    • 2018
  • A TRIAC dimmable LED driver with a wide tuning range and a two-stage uniform dimming scheme is proposed in this paper. To solve the restricted dimming range problem caused by the limited conduction ratio of TRIAC dimmers, a conduction ratio compensation technique is introduced, which can increase the output current up to the rated output current when the TRIAC dimmer turns to the maximum conduction ratio. For further optimization, a two-stage uniform dimming diagram with a rapid dimming curve and a slow dimming curve is designed to make the LED driver regulated visually uniform in the whole adjustable range of the TRIAC dimmer. The proposed control chip is fabricated in a TSMC $0.35{\mu}m$ 5V/650V CMOS/LDMOS process, and verified on a 21V/500mA circuit prototype. The test results show that, in the 90V/60Hz~132V/60Hz ac input range, the voltage linear regulation is 2.6%, the power factor is 99.5% and the efficiency is 83%. Moreover, in the dimming mode, the dimming rate is less than 1% when the maximum dimming current is 516mA and the minimum dimming current is only about 5mA.

ITO/$Alq_3$/Al 소자 구조에서 전기 전도 메카니즘 (Electrical Conduction Mechanism in ITO/$Alq_3$/Al device structure)

  • 정동회;김상걸;이동규;이준웅;허성우;장경욱;이원재;송민종;김태완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.531-532
    • /
    • 2005
  • We have used ITO/$Alq_3$/Al structure to study electrical conduction mechanism in $Alq_3$ based organic light emitting diode. Current-voltage characteristics were measured at room temperature by varying the thickness of $Alq_3$ layer from 60 to 400nm. We were able to prove that there are three different mechanism depending on the applied voltage; Ohmic, SCLC (space-charge-limited current). and TCLC (trap-charge -limited current) mechanism.

  • PDF