• Title/Summary/Keyword: Current compensator

Search Result 235, Processing Time 0.034 seconds

Algorithm of reactive power injection on Distributed Static Series Compensator (송전 전력 제어를 위한 분산 정지형 직렬 보상기의 무효전력 주입 기법)

  • Yoon, Hanjong;Lee, Taeyoung;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.214-215
    • /
    • 2017
  • Distributed Flexible AC Transmission System(D-FACTS) was proposed as a solution for weakness of FACTS device s. The D-FACTS device DSSC(Distributed Static Series Co mpensator) can provide controllable reactance compensation in transmission line such as SSSC(Static Synchronous Series Compensator). This paper introduce the algorithm of reactive power injection on DSSC and propose the method of current balancing by reactive power injection. The proposed algorithm has been verified with simulation and experiment results.

  • PDF

Analysis of Voltage Regulation by DSTATCOM - Using the EMTDC Program

  • Jeon Young-Soo;Kwak No-Hong;Choo Jin-Boo
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.329-334
    • /
    • 2005
  • The DSTATCOM(Distribution Static Synchronous Compensator) is one of the Custom Power Devices that can regulate voltage. The DSTATCOM operates as a shunt connected static var compensator whose capacitive or inductive output current can be controlled independent of the system voltage. The magnitude of the compensated voltage is limited by characteristics of the system and the load. Compensation capability of the DSTATCOM which can inject 1 MVAR reactive power was simulated by EMTDC under several conditions. This paper analyzes the effect of the DSTATCOM's compensation considering the length and kind of distribution line, the power factor and magnitude of the load, and the duration and magnitude of the voltage variation.

A Study on Fuzzy Logic Torque Ripple Reduction by Turn-off Angle Compensation of LSRM (LSRM의 Turn-off보상에 의한 퍼지로직 토크리플저감에 관한 연구)

  • Sung, H.K.;Jho, J.M.;Lee, J.M.;Yu, M.W.;Kim, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1616-1618
    • /
    • 2005
  • In this paper, A fuzzy logic based turn-off angle compensator for torque ripple reduction in a linear switched reluctance motor is proposed. The turn-off angle, as a complex function of motor speed and current, is automatically changed for a wide speed range to reduce torque ripple. Simulation results are presented that show ripple reduction when the him-off angle compensator is used.

  • PDF

Improvement of Calibration Method for a Dual-rotating Compensator Type Spectroscopic Ellipsometer

  • Byeong-Kwan Yang;Jin Seung Kim
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.428-434
    • /
    • 2023
  • The compensators used in spectroscopic ellipsometers are usually assumed to be ideal linear waveplates. In reality, however, they are elliptical waveplates, because they are usually made by bonding two or more linear waveplates of different materials with slight misalignment. This induces systematic error when they are modeled as linear waveplates. We propose an improved calibration method based on an optical model that regards an elliptical waveplate as a combination of a circular waveplate (rotator) and a linear waveplate. The method allows elimination of the systematic error, and the residual error of optic axis measurement is reduced to 0.025 degrees in the spectral range of 450-800 nm.

Average Current Control for Parallel Connected Converters

  • Jassim, Bassim M.H.;Zahawi, Bashar;Atkinson, David J.
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1153-1161
    • /
    • 2019
  • A current sharing controller is proposed in this paper for parallel-connected converters. The proposed controller is based on the calculation of the magnitudes of system current space vectors. Good current distribution between parallel converters is achieved with only one Proportional-Integral (PI) compensator. The proposed controller is analyzed and the circulating current impedance is derived for paralleled systems. The performance of the new control strategy is experimentally verified using two parallel connected converters employing Space Vector Pulse Width Modulation (SVPWM) feeding a passive RL load and a 2.2 kW three-phase induction motor load. The obtained test results show a reduction in the current imbalance ratio between the converters in the experimental setup from 53.9% to only 0.2% with the induction motor load.

A Study on the modeling and stability of Flyback converter using Average Current-mode Control (평균전류모드제어 기법을 이용한 플라이백 컨버터의 모델링 및 안정도에 관한 연구)

  • Baek, Soo-Hyun;Song, Sang-Ho;Yoon, Shin-Yong;Kim, Cherl-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2682-2684
    • /
    • 1999
  • This paper presents design and stability analysis of the constant frequency Flyback type converter using average current-mode control. The average current-mode control has been recently reported, and superior characteristics over a peak current-mode control such as a good tracking performance of an average current, no slope compensation and noise immunity. By the improvement of PM(Phase Margin) obt from applying the compensator in the current loop, the stability of designed flyback convert more improved. The validity of designed convert confirmed by simulation and experimental result

  • PDF

A New Control Method for Single-Phase Active Power Line Contioners (단상 능동 전력 조절 장치를 위한 새로운 제어기법)

  • 서영조
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.155-158
    • /
    • 2000
  • A new control method for single-phase shunt active power line conditioners(APLC's) operated under zero average power consumption is proposed in this paper. The amplitude of the sinusoidal source current which is in-phase with the source voltage can be determined from the average value of the instantaneous load power. Then the command current for the shunt APLC is obtained by subtraction the source current from the load current. Neither bulky filter nor time-consuming computation is required. The shunt power compensator supplies all the harmonics of he load current and the source only supplies the fundamental component,. Experimental results on a prototype verify the feasibility of the presented scheme,

  • PDF

Research on Mechanical Shim Application with Compensated Prompt γ Current of Vanadium Detectors

  • Xu, Zhi
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.141-147
    • /
    • 2017
  • Mechanical shim is an advanced technology for reactor power and axial offset control with control rod assemblies. To address the adverse accuracy impact on the ex-core power range neutron flux measurements-based axial offset control resulting from the variable positions of control rod assemblies, the lead-lag-compensated in-core self-powered vanadium detector signals are utilized. The prompt ${\gamma}$ current of self-powered detector is ignored normally due to its weakness compared with the delayed ${\beta}$ current, although it promptly reflects the flux change of the core. Based on the features of the prompt ${\gamma}$ current, a method for configuration of the lead-lag dynamic compensator is proposed. The simulations indicate that the method can improve dynamic response significantly with negligible adverse effects on the steady response. The robustness of the design implies that the method is of great value for engineering applications.

Current Limit Strategy of Voltage Controller of Delta-Connected H-Bridge STATCOM under Unbalanced Voltage Drop

  • Son, Gum Tae;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.550-558
    • /
    • 2018
  • This paper presents the current limit strategy of voltage controller of delta-connected H-bridge static synchronous compensator (STATCOM) under an unbalanced voltage fault event. When phase to ground fault happens, the feasibility to heighten the magnitude of sagging phase voltage is considered by using symmetric transformation method in delta-structure STATCOM. And the efficiency to cover the maximum physical current limit of switching device is considered by using vector analysis method that calculate the zero sequence current for balancing the cluster energy in delta connected H-bridge STATCOM. The result is simple and obvious. Only positive sequence current has to be used to support the unbalanced voltage sag. Although the relationship between combination of the negative sequence voltage with current and zero sequence current is nonlinear, the more negative sequence current is supplying, the larger zero sequence current is required. From the full-model STATCOM system simulation, zero sequence current demand is identified according to a ratio of positive and negative sequence compensating current. When only positive sequence current support voltage sag, the least zero sequence current is needed.

A Second-order Harmonic Current Reduction with a Fast Dynamic Response for a Two-stage Single-phase Grid-connected Inverter

  • Jung, Hong-Ju;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1988-1994
    • /
    • 2014
  • In a single-phase grid-connected power system consisting of a DC/DC converter and a DC/AC converter, the current drawn from renewable energy sources has a tendency to be pulsated and contains second-order frequency ripple components, which results in several drawback such as a power harvesting loss and a shortening of the energy source's life. This paper presents a new second-order harmonic current reduction scheme with a fast dc-link voltage loop for two-stage dc-dc-ac grid connected systems. In the frequency domain, an adequate control design is performed based on the small signal transfer function of a two-stage dc-dc-ac converter. To verify the effectiveness of proposed control algorithm, a 1 kW hardware prototype has been built and experimental results are presented.