• Title/Summary/Keyword: Current Modulating

Search Result 106, Processing Time 0.02 seconds

A plant-based multivitamin, multimineral, and phytonutrient supplementation enhances the DNA repair response to metabolic challenges

  • Yeo, Eunji;Hong, Jina;Kang, Seunghee;Lee, Wonyoung;Kwon, Oran;Park, Eunmi
    • Journal of Nutrition and Health
    • /
    • v.55 no.4
    • /
    • pp.450-461
    • /
    • 2022
  • Purpose: DNA damage and repair responses are induced by metabolic diseases and environmental stress. The balance of DNA repair response and the antioxidant system play a role in modulating the entire body's health. This study uses a high-fat and high-calorie (HFC) drink to examine the new roles of a plant-based multivitamin/mineral supplement with phytonutrients (PMP) for regulating the antioxidant system and cellular DNA repair signaling in the body resulting from metabolic stress. Methods: In a double-blind, randomized, parallel-arm, and placebo-controlled trial, healthy adults received a capsule containing either a PMP supplement (n = 12) or a placebo control (n = 12) for 8 weeks. Fasting blood samples were collected at 0, 1, and 3 hours after consuming a HFC drink (900 kcal). The blood samples were analyzed for the following oxidative stress makers: areas under the curve reactive oxygen species (ROS) levels, plasma malondialdehyde (MDA), erythrocytes MDA, urinary MDA, oxidized low-density lipoprotein, and the glutathione:oxidized glutathione ratio at the time points. We further examined the related protein levels of DNA repair signaling (pCHK1 (Serine 345), p-P53 (Serine 15), and 𝛄H2AX expression) in the plasma of subjects to evaluate the time-dependent effects of a HFC drink. Results: In a previous study, we showed that PMP supplementation for eight weeks reduces the ROS and endogenous DNA damage in human blood plasma. Results of the current study further show that PMP supplementation is significantly correlated with antioxidant defense. Compared to the placebo samples, the blood plasma obtained after PMP supplementation showed enhanced DNA damage response genes such as pCHK1(Serine 345) (a transducer of DNA response) and 𝛄H2AX (a hallmark of DNA damage) during the 8 weeks trial on metabolic challenges. Conclusion: Our results indicate that PMP supplementation for 8 weeks enhances the antioxidant system against oxidative stress and prevents DNA damage signaling in humans.

Ginseng saponin metabolite 20(S)-protopanaxadiol relieves pulmonary fibrosis by multiple-targets signaling pathways

  • Guoqing Ren;Weichao Lv;Yue Ding;Lei Wang;ZhengGuo Cui;Renshi Li;Jiangwei Tian;Chaofeng Zhang
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.543-551
    • /
    • 2023
  • Background: Panax ginseng Meyer is a representative Chinese herbal medicine with antioxidant and anti-inflammatory activity. 20(S)-Protopanaxadiol (PPD) has been isolated from ginseng and shown to have promising pharmacological activities. However, effects of PDD on pulmonary fibrosis (PF) have not been reported. We hypothesize that PDD may reverse inflammation-induced PF and be a novel therapeutic strategy. Methods: Adult male C57BL/6 mice were used to establish a model of PF induced by bleomycin (BLM). The pulmonary index was measured, and histological and immunohistochemical examinations were made. Cell cultures of mouse alveolar epithelial cells were analyzed with Western blotting, coimmunoprecipitation, immunofluorescence, immunohistochemistry, siRNA transfection, cellular thermal shift assay and qRT-PCR. Results: The survival rate of PPD-treated mice was higher than that of untreated BLM-challenged mice. Expression of fibrotic hallmarks, including α-SMA, TGF-β1 and collagen I, was reduced by PPD treatment, indicating attenuation of PF. Mice exposed to BLM had higher STING levels in lung tissue, and this was reduced by phosphorylated AMPK after activation by PPD. The role of phosphorylated AMPK in suppressing STING was confirmed in TGF-b1-incubated cells. Both in vivo and in vitro analyses indicated that PPD treatment attenuated BLM-induced PF by modulating the AMPK/STING signaling pathway. Conclusion: PPD ameliorated BLM-induced PF by multi-target regulation. The current study may help develop new therapeutic strategies for preventing PF.

As a Modulator, Multitasking Roles of SIRT1 in Respiratory Diseases

  • Yunxin Zhou;Fan Zhang;Junying Ding
    • IMMUNE NETWORK
    • /
    • v.22 no.3
    • /
    • pp.21.1-21.21
    • /
    • 2022
  • As far the current severe coronavirus disease 2019 (COVID-19), respiratory disease is still the biggest threat to human health. In addition, infectious respiratory diseases are particularly prominent. In addition to killing and clearing the infection pathogen directly, regulating the immune responses against the pathogens is also an important therapeutic modality. Sirtuins belong to NAD+-dependent class III histone deacetylases. Among 7 types of sirtuins, silent information regulator type-1 (SIRT1) played a multitasking role in modulating a wide range of physiological processes, including oxidative stress, inflammation, cell apoptosis, autophagy, antibacterial and antiviral functions. It showed a critical effect in regulating immune responses by deacetylation modification, especially through high-mobility group box 1 (HMGB1), a core molecule regulating the immune system. SIRT1 was associated with many respiratory diseases, including COVID-19 infection, bacterial pneumonia, tuberculosis, and so on. Here, we reviewed the latest research progress regarding the effects of SIRT1 on immune system in respiratory diseases. First, the structure and catalytic characteristics of SIRT1 were introduced. Next, the roles of SIRT1, and the mechanisms underlying the immune regulatory effect through HMGB1, as well as the specific activators/inhibitors of SIRT1, were elaborated. Finally, the multitasking roles of SIRT1 in several respiratory diseases were discussed separately. Taken together, this review implied that SIRT1 could serve as a promising specific therapeutic target for the treatment of respiratory diseases.

2-Hexylthieno[3,2-b]thiophene-substituted Anthracene Derivatives for Organic Field Effect Transistors and Photovoltaic Cells

  • Jo, So-Young;Hur, Jung-A;Kim, Kyung-Hwan;Lee, Tae-Wan;Shin, Ji-Cheol;Hwang, Kyung-Seok;Chin, Byung-Doo;Choi, Dong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.3061-3070
    • /
    • 2012
  • Novel 2-hexylthieno[3,2-b]thiophene-containing conjugated molecules have been synthesized via a reduction reaction using tin chloride in an acidic medium. They exhibited good solubility in common organic solvents and good self-film and crystal-forming properties. The single-crystalline objects were fabricated by a solvent slow diffusion process and then were employed for fabricating field-effect transistors (FETs) along with thinfilm transistors (TFTs). TFTs made of 5 and 6 exhibited carrier mobility as high as 0.10-0.15 $cm^2V^{-1}s^{-1}$. The single-crystal-based FET made of 6 showed 0.70 $cm^2V^{-1}s^{-1}$ which was relatively higher than that of the 5-based FET (${\mu}=0.23cm^2V^{-1}s^{-1}$). In addition, we fabricated organic photovoltaic (OPV) cells with new 2-hexylthieno [3,2-b]thiophene-containing conjugated molecules and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester ($PC_{61}BM$) without thermal annealing. The ternary system for a bulk heterojunction (BHJ) OPV cell was elaborated using $PC_{61}BM$ and two p-type conjugated molecules such as 5 and 7 for modulating the molecular energy levels. As a result, the OPV cell containing 5, 7, and $PC_{61}BM$ had improved results with an open-circuit voltage of 0.90 V, a short-circuit current density of 2.83 $mA/cm^2$, and a fill factor of 0.31, offering an overall power conversion efficiency (PCE) of 0.78%, which was larger than those of the devices made of only molecule 5 (${\eta}$~0.67%) or 7 (${\eta}$~0.46%) with $PC_{61}BM$ under identical weight compositions.

Effects of amino acid composition in pig diet on odorous compounds and microbial characteristics of swine excreta

  • Recharla, Neeraja;Kim, Kihyun;Park, Juncheol;Jeong, Jinyoung;Jeong, Yongdae;Lee, Hyunjeong;Hwang, Okhwa;Ryu, Jaehyoung;Baek, Youlchang;Oh, Youngkyun;Park, Sungkwon
    • Journal of Animal Science and Technology
    • /
    • v.59 no.12
    • /
    • pp.28.1-28.8
    • /
    • 2017
  • Background: Major amino acids in pig diets are Lys, Met, Thr, and Trp, but little is known about the requirements for the other essential amino acids, especially on odorous compounds and microbial characteristics in feces of growing-finishing pigs. To this end, different levels of amino acid composition added to diets to investigate the effects of amino acid composition on microbial characteristics and odorous compounds concentration. Methods: A total eight (n = 8) barrows (Landrace ${\times}$ Yorkshire ${\times}$ Duroc) with an average bodyweight of $89.38{\pm}3.3kg$ were individually fed diets formulated by Korean Feeding Standards 2007 (old version) or 2012 (updated with ideal protein concept) in metabolism crates with two replication. After 15-day adaptation period, fresh faecal samples were collected directly from pigs every week for 4 weeks and analysed for total volatile fatty acids (VFA), phenols and indoles by using gas chromatography. The nitrogen was determined by Kjeldahl method. Bacterial communities were detected by using a 454 FLX titanium pyrosequencing system. Results: Level of VFA tended to be greater in 2012 than 2007 group. Among VFAs, 2012 group had greater (p < 0.05) level of short chain fatty acids (SCFA) than control.Concentration of odorous compounds in feces was also affected by amino acid composition in pig diet. Levels of ammonium and indoles tended to be higher in 2012 group when compared with 2007 group.Concentration of phenols, p-cresol, biochemical oxygen demand, and total Kjeldahl nitrogen, however, were lower (P < 0.05) in 2012 treatment group compare to 2007. The proportion of Firmicute phylum were decreased, while the Bacteriodetes phylum proportion increased and bacterial genera includingCoprococcus, Bacillus, and Bacteroides increased (p < 0.05) in 2012 compare to 2007 group. Conclusion: Results from our current study indicates that well balanced amino acid composition reduces odor by modulating the gut microbial community. Administration of pig diet formulated with the ideal protein concept may help improve gut fermentation as well as reduce the odor causing compounds in pig manure.

The Inhibitory Effects of Hydrogen Sulfide on Pacemaker Activity of Interstitial Cells of Cajal from Mouse Small Intestine

  • Parajuli, Shankar Prasad;Choi, Seok;Lee, Jun;Kim, Young-Dae;Park, Chan-Guk;Kim, Man-Yoo;Kim, Hyun-Il;Yeum, Cheol-Ho;Jun, Jae-Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.2
    • /
    • pp.83-89
    • /
    • 2010
  • In this study, we studied whether hydrogen sulfide ($H_2S$) has an effect on the pacemaker activity of interstitial cells of Cajal (ICC), in the small intestine of mice. The actions of $H_2S$ on pacemaker activity were investigated using whole-cell patch-clamp technique, intracellular $Ca^{2+}$ analysis at $30^{\circ}C$ and RT-PCR in cultured mouse intestinal ICC. Exogenously applied sodium hydrogen sulfide (NaHS), a donor of hydrogen sulfide, caused a slight tonic inward current on pacemaker activity in ICC at low concentrations (50 and $100{\mu}m$), but at high concentration ($500{\mu}m$ and 1 mM) it seemed to cause light tonic inward currents and then inhibited pacemaker amplitude and pacemaker frequency, and also an increase in the resting currents in the outward direction. Glibenclamide or other potassium channel blockers (TEA, $BaCl_2$, apamin or 4-aminopydirine) did not have an effect on NaHS-induced action in ICC. The exogenous application of carbonilcyanide p-triflouromethoxyphenylhydrazone (FCCP) and thapsigargin also inhibited the pacemaker activity of ICC as NaHS. Also, we found NaHS inhibited the spontaneous intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) oscillations in cultured ICC. In doing an RT-PCR experiment, we found that ICC enriched population lacked mRNA for both CSE and CBS, but was prominently detected in unsorted muscle. In conclusion, $H_2S$ inhibited the pacemaker activity of ICC by modulating intracellular $Ca^{2+}$. These results can serve as evidence of the physiological action of $H_2S$ as acting on the ICC in gastrointestinal (GI) motility.

Current Trend and Perspective of Research and Development on Biologically - Active Livestock Products (생리활성을 강화한 기능성 축산식품의 연구개발 동향과 전망)

  • 이복희
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.6 no.2
    • /
    • pp.257-271
    • /
    • 1996
  • Livestock products like meat, milk and egg have been principal food sources for human beings since the historic periods of time. Nowadays consumption of these food items have been avoided due to its high contents of SFA, cholesterol and total fat which are major culprits of chronic adult diseases causing major deaths of people. However, the relationship between livestock products and diseases is not always true because the amounts of fat and cholesterol and types of fatty acids in meat and meat by-products depend on the part of the meat and types of animals. Although meat intakes do not always cause mai or adult diseases, still the developmental necessity does exist for animal foods equipped with biologically active properties, which in turn can improve nutritional status and health more than ever Meat with high protein lean part and low fat can be produced by applying synthetic somatotropin and beta-adrenergic agonists like clenbuterol, cimaterol etc. during breeding. This application brings benefits like higher growth rate, lower fat contents and improve feed efficiency ratios. Meats fortified with long chain PUFA($\omega$-3 fatty acids) can also be produced by modulating feed composition.Egg Products have faced the reduced sales annually because of its high cholesterol contents. Recently brand eggs fortified with special nutrients or chemical components having functional proper ties in the human body system are very popular Research Interests have been focused on eggs with low cholesterol and high omega-3 fatty acids. Low cholesterol eggs and high omega-3 eggs can be produced in several different ways, but popular way to increase is feeding the feeds with different oil sources containing high omega-3 and 6 fatty acids such as fish oil, perilla oil, linseed oil and lecithin etc. But proper compositon of feed formula should be found and economically beneficial. Brand eggs fortified with vitamin, mineral, unknown growth factors are also manufactured. Low cholesterol and high $\omega$-3 PUFA milk are marketed recently Cholesterol removal technology is not completely established and has several limitations to be overcome. Milk fortified with $\omega$-3 fatty acids is made by incorporating high &13 fatty acid foods in feed despite of extraordinary way of fatty acid metabolism In cow. All these biologically active products will be very beneficial and useful for human consumption when limitations of manufacturing technology such as safety and lowered sensory qualities are resolved. Furthermore, thorough and precise tests and quality control for these products should be performed to ensure the effectiveness and usefulness in terms of improving health and nutritional status in general. However one caution should be pointed out to lay people informing that these items are nothing but a food and not panacea. Therefore, it is important to remember that the only way of maintaining good health is absolutely through consuming balanced diet.

  • PDF

Inflammatory Bowel Disease and Cytokine (염증성 장질환과 사이토카인)

  • Choi, Eun Young;Cho, Kwang Keun;Choi, In Soon
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.448-461
    • /
    • 2013
  • Inflammatory bowel disease, known as Crohn's disease and ulcerative colitis, is an unexplained disease characterized by chronic inflammation that repeats a cycle of relapse, improvement, and complications. The cause of inflammatory bowel disease is not clearly known, but it is predicted that a complex of various factors precipitate its occurrence. In particular, inflammatory mediators, such as cytokine, induce an increase in cell-mediated inflammatory responses. Focal tissue damage then occurs in the intestinal mucosa because of the weakening of the immune-modulating functions of cotton. Immune and inflammatory responses do not decrease appropriately but continue until they lead to chronic inflammation. Current research has focused on the cytokine genes, which have important roles in these inflammatory responses. Cytokine is a glycoprotein that is produced mostly in activated immune cells. It connects the activation, multiplication, and differentiation between immune cells, which causes focal tissue damage and inflammatory response. Moreover, butyrate, which originates in dietary fiber and plays an important role in the structure and function of the intestinal area, shows control functions in the intestinal immune system by decreasing the proinflammatory cytokine and increasing the anti-inflammatory cytokine. Therefore, this research investigated the molecular mechanism of the anti-inflammatory effects of butyrate to comprehend the cytokine controlling abilities of butyrate in the immune cells. Butyrate is expected to have potential in new treatment strategies for inflammatory bowel disease.

Painful Channels in Sensory Neurons

  • Lee, Yunjong;Lee, Chang-Hun;Oh, Uhtaek
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.315-324
    • /
    • 2005
  • Pain is an unpleasant sensation experienced when tissues are damaged. Thus, pain sensation in some way protects body from imminent threat or injury. Peripheral sensory nerves innervated to peripheral tissues initially respond to multiple forms of noxious or strong stimuli, such as heat, mechanical and chemical stimuli. In response to these stimuli, electrical signals for conducting the nociceptive neural signals through axons are generated. These action potentials are then conveyed to specific areas in the spinal cord and in the brain. Sensory afferent fibers are heterogeneous in many aspects. For example, sensory nerves are classified as $A{\alpha}$, $-{\beta}$, $-{\delta}$ and C-fibers according to their diameter and degree of myelination. It is widely accepted that small sensory fibers tend to respond to vigorous or noxious stimuli and related to nociception. Thus these fibers are specifically called nociceptors. Most of nociceptors respond to noxious mechanical stimuli and heat. In addition, these sensory fibers also respond to chemical stimuli [Davis et al. (1993)] such as capsaicin. Thus, nociceptors are considered polymodal. Recent advance in research on ion channels in sensory neurons reveals molecular mechanisms underlying how various types of stimuli can be transduced to neural signals transmitted to the brain for pain perception. In particular, electrophysiological studies on ion channels characterize biophysical properties of ion channels in sensory neurons. Furthermore, molecular biology leads to identification of genetic structures as well as molecular properties of ion channels in sensory neurons. These ion channels are expressed in axon terminals as well as in cell soma. When these channels are activated, inward currents or outward currents are generated, which will lead to depolarization or hyperpolarization of the membrane causing increased or decreased excitability of sensory neurons. In order to depolarize the membrane of nerve terminals, either inward currents should be generated or outward currents should be inhibited. So far, many cationic channels that are responsible for the excitation of sensory neurons are introduced recently. Activation of these channels in sensory neurons is evidently critical to the generation of nociceptive signals. The main channels responsible for inward membrane currents in nociceptors are voltage-activated sodium and calcium channels, while outward current is carried mainly by potassium ions. In addition, activation of non-selective cation channels is also responsible for the excitation of sensory neurons. Thus, excitability of neurons can be controlled by regulating expression or by modulating activity of these channels.

Effects of Pine Needle Extract on Pacemaker Currents in Interstitial Cells of Cajal from the Murine Small Intestine

  • Cheong, Hyeonsook;Paudyal, Dilli Parasad;Jun, Jae Yeoul;Yeum, Cheol Ho;Yoon, Pyung Jin;Park, Chan Guk;Kim, Man Yoo;So, Insuk;Kim, Ki Whan;Choi, Seok
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.235-240
    • /
    • 2005
  • Extracts of pine needles (Pinus densiflora Sieb. et Zucc.) have diverse physiological and pharmacological actions. In this study we show that pine needle extract alters pacemaker currents in interstitial cells of Cajal (ICC) by modulating ATP-sensitive $K^+$ channels and that this effect is mediated by prostaglandins. In whole cell patches at $30^{\circ}C$, ICC generated spontaneous pacemaker potentials in the current clamp mode (I = 0), and inward currents (pacemaker currents) in the voltage clamp mode at a holding potential of -70 mV. Pine needle extract hyperpolarized the membrane potential, and in voltage clamp mode decreased both the frequency and amplitude of the pacemaker currents, and increased the resting currents in the outward direction. It also inhibited the pacemaker currents in a dose-dependent manner. Because the effects of pine needle extract on pacemaker currents were the same as those of pinacidil (an ATP-sensitive $K^+$ channel opener) we tested the effect of glibenclamide (an ATP-sensitive $K^+$ channels blocker) on ICC exposed to pine needle extract. The effects of pine needle extract on pacemaker currents were blocked by glibenclamide. To see whether production of prostaglandins (PGs) is involved in the inhibitory effect of pine needle extract on pacemaker currents, we tested the effects of naproxen, a non-selective cyclooxygenase (COX-1 and COX-2) inhibitor, and AH6809, a prostaglandin EP1 and EP2 receptor antagonist. Naproxen and AH6809 blocked the inhibitory effects of pine needle extract on ICC. These results indicate that pine needle extract inhibits the pacemaker currents of ICC by activating ATP-sensitive $K^+$ channels via the production of PGs.