• Title/Summary/Keyword: Current Injection

Search Result 1,044, Processing Time 0.023 seconds

Current Density Equations Representing the Transition between the Injection- and Bulk-limited Currents for Organic Semiconductors

  • Lee, Sang-Gun;Hattori, Reiji
    • Journal of Information Display
    • /
    • v.10 no.4
    • /
    • pp.143-148
    • /
    • 2009
  • The theoretical current density equations for organic semiconductors was derived according to the internal carrier emission equation based on the diffusion model at the Schottky barrier contact and the mobility equation based on the field dependence model, the so-called "Poole-Frenkel mobility model." The electric field becomes constant because of the absence of a space charge effect in the case of a higher injection barrier height and a lower sample thickness, but there is distribution in the electric field because of the space charge effect in the case of a lower injection barrier height and a higher sample thickness. The transition between the injection- and bulk-limited currents was presented according to the Schottky barrier height and the sample thickness change.

Electromagnetic Susceptibility Analysis of I/O Buffers Using the Bulk Current Injection Method

  • Kwak, SangKeun;Nah, Wansoo;Kim, SoYoung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.114-126
    • /
    • 2013
  • In this paper, we present a set of methodologies to model the electromagnetic susceptibility (EMS) testing of I/O buffers for mobile system memory based on the bulk current injection (BCI) method. An efficient equivalent circuit model is developed for the current injection probe, line impedance stabilization network (LISN), printed circuit board (PCB), and package. The simulation results show good correlation with the measurements and thus, the work presented here will enable electromagnetic susceptibility analysis at the integrated circuit (IC) design stage.

Control and Design of a Arc Power Supply for KSTAR's the Neutral Beam Injection

  • Ryu, Dong-Kyun;Lee, Hee-Jun;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.216-226
    • /
    • 2015
  • The neutral beam injection generate ultra-high temperature energy in the tokamak of nuclear fusion. The neutral beam injection make up arc power supply, filament power supply and acceleration & deceleration power supply. The arc power supply has characteristics of low voltage and high current. Arc power supply generate arc through constant output of voltage and current. So this paper proposed suitable buck converter for low voltage and high current. The proposed buck converter used parallel switch because it can be increased capacity and decrease conduction loss. When an arc generated, the neutral beam injection chamber occur high voltage. And it will break output capacitor of buck converter. Therefore the output capacitor was removed in the proposed converter. Thus the proposed converter should be designed for the characteristics of low voltage and high current. Also, the arc power supply should be guaranteed for system stability. The proposed parallel buck converter enables the system stability of the divided low output voltage and high current. The proposed converter with constant output be the most important design of the output inductor. In this paper, designed arc power supply verified operation of system and stability through simulation and prototype. After it is applied to the 288[kW] arc power supply for neutral beam injection.

Implementation of High Frequency Current Controller for Self-Sensing Induction Motors (유도전동기 자가 진단 및 상수 추정을 위한 고주파 전류 제어기 구현)

  • Kwon, Young-Su;Seok, Jul-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.144-146
    • /
    • 2007
  • High frequency voltage signal injection have been widely used but they have some problems like over current protection. High frequency current signal injection and feedback control are more stable than voltage signal injection. In this paper, high frequency current controller for self-sensing and parameter estimation of induction motors is presented.

  • PDF

Sensorless Control of IPMSM with a Simplified High-Frequency Square Wave Injection Method

  • Alaei, Ahmadreza;Lee, Dong-Hee;Ahn, Jin-Woo;Saghaeian Nejad, Sayed Morteza
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1515-1527
    • /
    • 2018
  • This paper presents a sensorless speed control of IPMSM (Interior Permanent Magnet Synchronous Motor) using the high-frequency (HF) square wave injection method. In the proposed HF pulsating square wave injection method, injection voltage is applied into the estimated d-axis of rotor and high-frequency induced q-axis current is considered to estimate the rotor position. Conventional square wave injection methods may need complex demodulation process to find rotor position, while in the proposed method, an easy demodulation process based on the rising-falling edge of the injected voltage and carrier induced q-axis current is implemented, which needs less processing time and improves control bandwidth. Unlike some saliency-based sensorless methods, the proposed method uses maximum torque per ampere (MTPA) strategy, instead of zero d-axis command current strategy, to improve control performance. Furthermore, this paper directly uses resultant d-axis current to detect the magnet polarity and eliminates the need to add an extra pulse injection for magnet polarity detection. As experimental results show, the proposed method can quickly find initial rotor position and MTPA strategy helps to improve the control performance. The effectiveness of the proposed method and all theoretical concepts are verified by mathematical equations, simulation, and experimental tests.

Harmonic Reduction of Electric Propulsion System by Current Injection (전류주입에 의한 전기추진시스템의 고조파 저감)

  • Kim, Jong-Su;Han, Won-Hui;Seo, Dong-Hoan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.4
    • /
    • pp.360-364
    • /
    • 2012
  • AC to DC converter that consists of relatively simple diode rectifier devices has been widely used in the field of the electric propulsion system. Also, since this rectifier includes large harmonics in the input current, a variety of researches have been developed to reduce the harmonics. The proposed method of this paper is to reduce the harmonics included in the input current of rectifiers and propulsion motor by injecting the output current of diode rectifier into the input of them. In addition, the proposed method ensures electrical safety through the respective isolation of the injection current, the source, and the loads using the Wye-Delta insulating transformer applied in current injection device that is installed in the input circuit of rectifiers and propulsion motor. The proposed method is simulated by applying to the electric propulsion ship that is currently operating. We confirm the validity of the proposed method compared with conventional power conversion system.

A Study on the Measurement Technique of the Grounding Mesh Resistance by Field Measurements (현장실측에 의한 메시(Mesh)접지저항 출정기법 연구)

  • 한기붕;김삼수;정세중;이상익
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.426-429
    • /
    • 1999
  • In this paper, we have provided the measurement technique of the grounding mesh resistance by field measurements. The standard of measurement is specified in the IEEE Std 81.2-1991 and JEAC 5001-1988, which is the the fall-of-potential method by test-current injection, but this method is difficult to apply at field, where is small around a electric power substation of domestic. For the convenient measurement method, space of assistant probe and quantity of test-current injection are changed step for step. As the result, ' the proposed measurement technique of grounding mesh resistance is that the space of current and potential probes must be fixed at 150rn from a grounding mesh, the test-current injection has to keep 5A or more.

  • PDF

Torque Ripple Reduction for Permanent Magnet Synchronous Motor using Harmonic Current Injection (고조파 전류를 이용한 영구자석형 동기 전동기의 토크 리플 저감)

  • Kwon, Soon-O;Lee, Jeong-Jong;Lee, Geun-Ho;Hong, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1930-1935
    • /
    • 2009
  • This paper deals with the torque ripple reduction of permanent magnet synchronous motor using harmonic current injection. Torque ripple of electric motor reduces system stability and performances, therefore efforts to reduce torque ripple are exerted in the design process. Torque ripple can be reduced by appropriate pole/slot combination, skew of rotor or stator, design of magnetic circuit, etc. In addition, torque ripple can be also reduced by input voltage and current, and many researches have been conducted to reduce torque ripple for six-step drive. Torque ripple reduction for current vector controlled permanent magnet synchronous motor also have been conducted and verified by investigating back emf wave form. Torque ripple reduction in this paper started from getting torque profile according to input current and electrical angle calculated by FEA, then instantaneous currents at each electrical angles for constant torque are calculated and applied to experiments. Therefore, 0% of torque ripple can be obtained theoretically with harmonic current injection. In order to maximize the effect of torque ripple reduction, a BLDC motor having high harmonic component of back emf is chosen. With sinusoidal current drive, over 100% of torque ripple is obtained initially, then 0.5 % of torque ripple is obtained by FEA using harmonic current injection. The effect is verified by experiment and the presented method can be effectively applicable to Electric Power Steering(EPS).

Fabrication of deflector integrated laser diodes and light deflection (광 편향기 집적 레이저 다이오드의 제작 및 광의 편향)

  • 김강호;권오기;김종회;김현수;심은덕;오광룡;김석원
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.2
    • /
    • pp.171-176
    • /
    • 2004
  • A light deflector integrated laser diode(LD) was fabricated and the characteristics of LD and ourput beam deflection as a function of deflector injection current were measured. To integrate the deflector with LD, a passive waveguide was integrated with the LD and a triangular-type light deflector was fabricated on the upper clad of the passive waveguide section. Light deflection from the fabricated light deflector is controlled by the effective refractive index variation induced by carrier injection. To characterize the effect of the deflector injection current, threshold current, slope efficiency, and output beam spectrum were measured as a function of deflector injection current. From these measured data, the increment in the threshold current and the decrement of the slope efficiency were observed. However, the output beam spectrum was not affected by the deflector. The Beam Propagation Method(BPM) was used to simulate the proposed device and the light deflection was measured by the far-field pattern of the output beam as a function of the deflector injection current. In the fabricated deflector integrated LD, the deflection angle of 1.9$^{\circ}$ at the injection current of 15 ㎃ was obtained.

Analysis on Current and Optical Characteristics by Electronic Ink Loading Method in Charged Particles Type Display (대전입자형 디스플레이에서 전자 잉크 주입 방법에 따른 전류 및 광특성 분석)

  • An, Hyeong-Jin;Kim, Young-cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.123-129
    • /
    • 2020
  • We analyzed the drift current by charged particles according to the loading methods applied into a closed cell by electronic ink at a reflective-type display panel using an electrophoretic mechanism. For this experiment, various panels were fabricated with injection voltages for electronic ink taking values in the range -4~0 V. The size of each cell was 220 ㎛ × 220 ㎛ and height of the barrier rib was 54.28 ㎛. The electronic ink was fabricated by mixing electrically neutral fluid and single-charge white particles. Drift current was measured by moving charged particles. A biasing voltage of 6 V was applied to the display panel. As a result, the drift current was proportional to the injection voltage for electronic ink, but it decreased in case of an injection voltage above -3 V. Our experimentation ascertained that the concentration of charged particles injected into closed cells is controlled by the injection voltage and the selective injection of charged particles above movable q/m is possible.